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Abstract

Accurate modeling of carbon sequestration by forests requires scaling wood formation
processes from trees to the landscape. The quantification of growth and carbon
dynamics requires deep knowledge of the variability in xylem phenology among
individuals. This study presents a comprehensive assessment of seasonal and individual
variability in xylem phenology based on more than 800 balsam firs (4bies balsamea
(L.) Mill.) monitored weekly across 33 plots from 2018 to 2022 in Montmorency Forest,
Quebec, Canada. Wood microcores were collected from April to October to quantify
the timings of cambial activity and xylem development on anatomical sections
observed at high magnification under the microscope. The first enlarging cells appeared
between late May and early June (day of the year (DOY) 153-167), and cell-wall
thickening ended in late August (DOY 223-238), resulting in a growing season of 63
to 79 days. Xylem production ranged from 27.4 to 47.9 radial cells. While the onset of
xylogenesis was well synchronized among individuals, within 2 weeks, the cessation
of growth showed a greater variability, reaching up to 3 weeks. This autumnal
variability was positively correlated with wood production, as higher cambial activity
increases the accumulation of xylem cells to be differentiated. Our findings provide
empirical evidence that individual variability in growth cessation reflects the
underlying heterogeneity in cambial activity among trees of the same stand. Our results
demonstrate the role of xylem phenology, especially during the autumn, in shaping
forest growth. The assessment of both seasonal and individual variability in phenology
is an essential step to improve the representation of autumn processes in forest carbon
models, which can help to reduce the uncertainty in predictions of boreal forest growth

under current or future climate scenarios.

Keywords: Xylogenesis; Cell production; Cell differentiation; Microcore; Sample size;

Abies balsamea
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1 Introduction

Forests are the largest terrestrial carbon sink, absorbing about 30% of the global annual
CO:2 emissions, and play a key role in mitigating climate change (IPCC, 2023; FAO,
2022). Their ability to sequester carbon is strongly influenced by the seasonal dynamics
of tree growth, particularly phenology, which governs the timings and duration of
carbon uptake (Silvestro et al., 2024; Piao et al., 2019; Keenan et al., 2014). Climate-
driven shifts in phenology, especially the earlier budburst in spring or delayed
photosynthesis in autumn, can affect the annual carbon balance of forest ecosystems
(Liu et al., 2025; Rossi et al., 2016; Richardson et al., 2013). Understanding these
changes is essential for predicting how forests respond to climate change and how much
carbon is ultimately stored in woody biomass. Most existing studies on tree phenology
rely on leaf-based metrics, such as budburst and senescence, obtained through direct
observations or remote sensing (Campioli et al., 2024; Piao et al., 2019; Fu et al., 2019;
Gallinat et al., 2015). Despite their wide use and application, these metrics are
particularly limited in autumn due to the gradual and species-specific nature of leaf
senescence (Silvestro et al., 2025; Gallinat et al., 2015). The occurrence of multiple
drivers of autumnal phenology introduces uncertainty in defining the end of the
growing season, limiting our ability to disentangle the processes of carbon sequestration
and carbon allocation, to assess forest productivity under changing climates, and to

identify the major causes affecting the seasonal dynamics of tree growth.

Xylem phenology describes the phases of wood formation, i.e., cell division and
differentiation, which are critical to assess carbon sequestration of forests. This process
is typically monitored using high-resolution microcore sampling that enables accurate
detection of cambial activity and development of xylem cells (Rossi et al., 2006a).
Xylem phenology determines the length of the growing season, a key factor influencing
carbon allocation into wood biomass (Silvestro et al., 2023; Keenan et al., 2014). The
recent literature suggests that cambial reactivation is primarily driven by thermal
signals, in the form of either threshold or accumulated heat (Zhang et al., 2024; Li et

al., 2017; Rossi et al., 2016). In contrast, the cessation of wood formation seems to be
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influenced by a more complex set of endogenous and environmental factors occurring
in autumn, including photoperiod, weather, and the physiological status of the trees (Mu
et al., 2023; Perrin et al., 2017; Gallinat et al., 2015). Because of this wide interaction
of environmental and endogenous factors, autumn phenology exhibits a greater
individual variability compared to the thermally-driven growth reactivation in spring
(Rathgeber et al., 2011). There is an urgent need to analyze more deeply the individual
variability in growth dynamics by proposing a systematic quantitative assessment of

this seasonal contrast between spring and autumnal phenology.

The phenological variability among individuals involves trees with either early growth
cessation or xylem formation extended later in autumn. Such a variability influences
the statistical precision and accuracy of our estimations of the timings and amount of
carbon assimilation of a stand (Marchand et al., 2020). Beyond its methodological
implications, phenological asynchrony may also influence stand-level growth dynamics.
If individual trees stagger their growth cessation, this temporal spread could reduce
peak competition for resources within the stand and promote more efficient resource
use (Rathgeber et al., 2011). As a result, cumulative wood production may increase
when growth activity is distributed over a longer period (Rossi et al., 2016; Cuny et al.,
2012). The relationship between the individual variability in phenology and wood
growth is raising interest among forest ecologists. Phenological heterogeneity is a
common feature of natural populations, and its potential impact in shaping growth
dynamics and carbon sequestration has recently been investigated (Silvestro et al., 2025;
Marchand et al., 2020; Delpierre et al., 2016). However, despite the growing interest in
individual phenological variability, direct evidence linking variability in autumn

phenology to xylem cell production is still limited.

Most studies on xylem phenology have been based on small sample sizes and short
observation periods (Wang et al., 2023; X. Liu et al., 2019), raising concerns about the
representativeness of their findings and the robustness of the statistics at the stand level.
Although Silvestro et al. (2022) proposed sample size guidelines based on phenological

data, the results were limited to a single year. A question remains on how much such
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differences between spring and autumn phenology are stable in time. If autumn
phenology indeed exhibits higher individual variability as suggested, accurate
assessment at the population level may require larger sample sizes. Despite its relevance
for the accuracy of phenological analyses, this methodological aspect has received little
attention in the literature, potentially affecting the interpretation of seasonal growth

dynamics in trees.

To fill these gaps, we investigated the seasonal dynamics of xylem phenology using
balsam fir (Abies balsamea (L.) Mill.) as a model species, given its ecological
dominance and economic relevance in northeastern North America. Leveraging one of
the largest monitoring of intra-annual wood formation worldwide, involving a sample
of more than 800 trees in five years, we provide the first quantitative assessment of
individual variability in spring and autumn phenology. We conducted weekly microcore
sampling across 33 plots located in the same study area to track the timing of wood
formation during 20182022, enabling a robust evaluation of individual seasonal
variability and its implications for wood productivity. We tested two hypotheses related
to the variability in xylem phenology among individuals: 1) autumn has a greater
variability than spring; 2) a higher variability in autumn phenology corresponds to a

larger variability in xylem cell production.
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2 Materials and methods
2.1 Study area

This study was conducted at the Montmorency Forest (47.32° N, 71.15° W, 850 m a.s.l.),
located in the southern interior of Quebec, Canada. The local climate is shaped by both
polar air masses and the North Atlantic Ocean, resulting in a typical boreal continental
regime (He et al., 2025; Perrin et al., 2017). The growing season is short and mild, and
the winter is long and cold. The mean annual temperature in the last 20 years was 0.9 °C.
January is the coldest month with a mean temperature of —14.4 °C, and July is the
warmest with a mean temperature of 15.0 °C. Total precipitation is 1,379 mm, of which
738 mm falls in the form of rain. Snow persists on the soil from the end of October to
mid-May (Fig. 1). The climate is primarily limited by energy input, while the local
variability in soil water content is significantly influenced by topography, soil
properties, drainage regimes, and vegetation structure and type (Lagueux et al., 2024;
Harel et al., 2023). The area belongs to the balsam fir—white birch bioclimatic domain

(Lagueux et al., 2024), with balsam fir representing 80% of the stand composition.

2.2 Tree selection and sampling

A total of 33 plots (20 m x 20 m) were established within an area of 1 km?. Four to five
healthy and upright firs were selected annually per plot and sampled throughout the
growing season (Fig. 1). Overall, more than 800 firs were selected for the weekly
sampling throughout the study period. The selected trees had a diameter at breast height
(DBH) of 11.8 &+ 2.5 cm, a height 0f 9.3 + 1.7 m (mean * standard deviation (s.d.)), and
an estimated age ranging from 25 to 35 years. Weekly microcores were collected from
these trees during April-October from 2018 to 2022. Sampling was carried out at 1 to 2
m above ground using Trephor (Rossi et al., 2006a). Each microcore was 2 mm in
diameter and 2-3 cm in length, and included at least two intact tree rings and the

adjacent phloem tissue.
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2.3 Lab analysis and data collection

The microcores were dehydrated through a graded alcohol series, cleared with limonene,
and embedded in paraffin. Transverse sections (8 um thick) were obtained using a rotary
microtome, stained with cresyl violet acetate (Rossi et al., 2006b), and examined under
both visible and polarized light at 250% magnification to distinguish xylem cells at
different developmental phases along three rows per section. Cambial cells appeared as
flattened cells with thin walls, enlarging cells showed larger sizes with irregular
diameters, and wall-thickening cells exhibited birefringence under polarized light.
Mature cells had fully developed secondary walls under polarized light (Rossi et al.,
2006a, b). The number of cells in each section was averaged for each sample and
developmental phase and associated to the corresponding DOY. The number of cells
was interpolated between two successive observations on a daily basis using linear
interpolation (Rossi et al., 2006b). The onset and ending of each developmental phase
(cell enlargement, wall thickening and lignification, and maturation) were identified for
every tree and determined as the DOY when the first or last tracheid was observed in
each phase. Spring and autumn phenology refers to the onset (i.e., first enlarging, first
wall thickening, and first mature cells) and cessation (i.e., ending of cell enlargement

and ending of wall thickening) of xylogenesis.

2.4 Data analysis and statistics

Cell production was fitted by Gompertz functions (Rossi et al., 2006b) using Eq. 1:
y = ae—’ " (1)

where y is the cell production, « is the upper asymptote, [ is the x-axis placement

parameter, k is the rate of change, and T is the time, expressed as DOY.

We used a variance component analysis in mixed models to quantify the sources of
variation in xylem phenology and cell production across hierarchical levels (i.e.,

temperature, precipitation, plot, and DBH). The relationships between phenological
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events and their variability were analyzed using Pearson correlation and Mantel tests
(Legendre et al., 2015). The relationship between phenological timing and duration was
tested using sample linear regression, while the relationship between growth duration
and cell production was assessed via standardized major axis (SMA) regression, which
is appropriate in the absence of clear independent variables (Silvestro et al., 2022). We
used linear regression models to assess the influence of climatic variables and DBH on

xylem phenology.

To determine the optimal sample size for spring and autumn phenology, we conducted
10,000 bootstrap simulations across sampling levels (2-300 trees), recalculating the
mean and s.d. for each phenological phase. We calculated the margin of error (ME),
which varies across different confidence levels (80%, 90%, 95%, and 99%) due to

random sampling, using Eq. 2 (Puth et al., 2015):
ME =t X s.d. (2)

where t (the critical value) represents the two-tailed 7-value at the different confidence
level with (n — 1) degrees of freedom, and s.d. is the standard deviation of the
bootstrap mean values. We defined the minimum sample size as the smallest sample

that satisfies the confidence interval and ME for each phenology phase.

Analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD)
tested the difference in phenology, cell production, and duration of each phenology

phase between years. All statistical analyses were performed using R version 4.4.0 (R

Core Team, 2025).
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3 Results
3.1 Individual variability in xylem phenology

On average, cell enlargement began between DOY 153 and 167, wall thickening started
between DOY 163 and 180, and cell maturation commenced between DOY 172 and
187. The growth reactivated earlier in 2021 and later in 2019 (Fig. 2). The ending of
cell enlargement ranged from DOY 209 to 218. Cell wall thickening ceased between
DOY 223 and 238. In autumn, growth ended earlier in 2021 and later in 2018 (p < 0.05).
Xylem cell production showed a pronounced interannual variability, ranging from 27.4

cells in 2019 to 47.9 cells in 2018 (p <0.05).

In spring, 77%-83% of the plots exhibited phenological phases occurring within a 15-
day window, indicating a high degree of temporal clustering across plots (Fig. S1). In
contrast, autumn phenology was more heterogeneous, with only 60%-62% of plots
showing phases within the same time window. Significant differences in the duration
of phenological phases between spring and autumn were also observed (Table 1, p <
0.05). In spring, trees in the same plot completed each phenological phase within an
average period of 11 days, reflecting a high degree of synchrony among individuals. In
autumn, this period ranged from 14 to 22 days, indicating a higher heterogeneity within

plots.

3.2 Phenological variability and cell production

Variance component analysis showed that spring phenology was largely driven by
temperature and precipitation, which together explained about 70% of the total variance,
indicating strong climatic control (Fig. 3). In contrast, autumn phenology was more
influenced by plot and DBH, reflecting the greater importance of structural traits and
site conditions. To further explore these patterns, we identified key climatic windows
based on previous studies and our own observations (Fig. S2). May was the critical

month for spring phenology, while July and August were most relevant for the ending
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of cell enlargement and wall thickening, respectively (Fig. S3). Spring phenology was
significantly correlated with May temperature (p <0.001), confirming their climatic
dependence (Fig. S4). In contrast, autumn phenology showed weaker or no correlations
with temperature, but was significantly delayed in trees with larger DBH (p <0.01),

underscoring the role of tree size in regulating late-season dynamics.

Strong correlations were observed among the phenological phases in spring and autumn
(Fig. 4; p <0.001). Cell production was negatively correlated with the timings of spring
phenological phases and positively correlated with the phases in autumn (p < 0.001),
indicating that earlier spring onset and later autumn cessation are associated with
increased xylem production. Mantel tests revealed that plots with higher xylem cell
production also exhibited greater variability in autumn phenology, suggesting that
increased growth may contribute to wider heterogeneity among individuals in the

timings of growth cessation (p <0.05).

3.3 Duration of growth phases and cell production

The durations of cell enlargement and wall thickening phases varied significantly
among years (Fig. 5). On average, cell enlargement lasted 48-60 days, was shorter in
2019 and longer in 2022. Cell wall thickening ranged from 49 to 68 days, lasting longer
in 2018 and shorter in 2019. In all years except 2019, the slope of the relationship
between onset and duration was smaller than that of the ending, indicating a stronger
influence of autumn phenology on the duration of growth (Figs. 6, S3, and S4, p <
0.001). The variations in growth duration were also reflected in differences in xylem
cell production. SMA regression also confirmed that longer growth phases were

associated with higher cell production (Figs. 7, S5, and S6, p < 0.001).

3.4 Sample size variability

The sample sizes estimated for the phenological phases in spring were consistently
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lower than those in autumn at the same confidence level and error margin (Tables S1-
S4). At the 95% confidence level with a +3-day error margin, spring phenological
phases, such as the first wall-thickening cell, required between 8 and 18 trees, whereas
autumn phenological phases, such as the ending of cell wall-thickening, required 17 to
42 trees across years. In general, autumn required two to three times larger samples
than spring across all tested error margins in order to obtain good estimations of xylem
phenology. Analysis of 805 trees over five years indicated that a sample size of 27 trees
provides 95% confidence in estimating xylem phenology with a margin of error of 1

week (Table 2).
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4 Discussion
4.1 Individual variability in xylem phenology

This study reveals a marked contrast in xylem phenology between spring and autumnal
events, with the latter showing a greater temporal dispersion. Such a contrast suggests
distinct underlying regulatory mechanisms. Spring development appears to be primarily
controlled by external drivers, particularly the temperatures preceding the growing
season (Li et al., 2017; Rossi et al., 2016). Despite substantial interannual variation in
May temperatures across the study area, cambial reactivation was tightly synchronized
among individuals within each year. This pattern likely reflects a consistent, species-
specific thermal threshold for the onset of cambial activity, as reported previously (Zeng
et al., 2022; Bogdziewicz et al., 2020). This synchrony was reflected in the coordinated
expansion of enlarging and wall-thickening cells across individuals. Nevertheless,
interannual variation in the timing of spring onset remained pronounced, demonstrating
the high sensitivity of spring phenology to the annual variability in temperature (Zeng

et al., 2022).

Compared with spring phenology, autumn phenology is likely to be influenced by a
more complex interplay of factors, including the climatic conditions throughout the
growing season, photoperiod, tree physiological status, and microsite conditions
(Rathgeber et al., 2016; Way and Montgomery, 2015). The pronounced variability in
xylem autumn phenology observed in our study is consistent with the high inter-
individual dispersion in leaf senescence and late-season soil COz efflux reported in
previous research (Harel et al., 2023; Perrin et al., 2017; Cuny et al., 2012). Similar
patterns have been observed in other boreal species such as larch and black spruce,
where autumnal growth cessation reflects both genetic predisposition and
environmental influences (Guo et al., 2022; Rossi and Bousquet, 2014). Internal carbon
dynamics and sink limitation may further modulate the onset of dormancy. The absence
of a clear, dominant external cue during autumn could explain the weaker synchrony
observed among individuals, possibly contributing to the relatively limited focus on

this phase in phenological research (Gallinat et al., 2015).
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Beyond the environmental influences, the variability in autumn phenology could partly
reflect differences in individual growth trajectories accumulated earlier in the growing
season. Trees that maintained higher cambial activity during spring and summer tended
to extend later xylem formation during autumn, contributing to a broader spread in the
timing of growth cessation among individuals (Palombo et al., 2018; Rathgeber et al.,
2011). This carry-over effect of cumulative growth explains the marked seasonal
contrast in phenological synchrony that we observed in our site. This finding aligns
with Zhang et al. (2023), who reported that the factors influencing spring and autumn
phenology differ markedly, reinforcing the seasonal asymmetry in regulatory
mechanisms. The high synchrony in spring likely results from shared climatic triggers,
whereas the variability in autumn may be linked to both differences in the microclimate
among permanent plots and the accumulated growth performance of individual trees,

resulting in diverging stand-level growth and carbon allocation.

4.2 Productivity gains from asynchronous autumn phenology

Sites with greater individual variability in autumn phenology exhibited higher xylem
cell production. This pattern likely reflects differences in the duration of cambial
activity among trees, with some individuals having higher growth rates and longer
growing seasons. Individuals that maintained cell division longer during summer
produced more xylem cells and delayed growth cessation into autumn, thereby
contributing to both increased annual xylem production and a wider spread in autumn
phenology (Rathgeber et al., 2011). The physiological basis of this pattern lies in
extended phases of cell enlargement and wall thickening, which are associated with the
number of xylem cells to differentiate (Silvestro et al., 2023). A mismatch in growth
cessation across individuals reduces the risk of synchronous exposure to unfavorable
events in autumn, thus enhancing the resilience to short-term environmental stress
(Tilman et al., 2006). Prolonged cambial activity resulting from higher xylem
production may delay the onset of dormancy (Lupi et al., 2010), indicating that

enhanced growth comes with physiological trade-offs related to seasonal transitions.
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Although an increased growth may enhance carbon sequestration at the stand level,
greater inter-individual variation in autumn phenology could introduce ecological
trade-offs. As individuals diverge in the timing of late-season transitions, synchrony
with the photoperiodic signal may become disrupted. Photoperiod regulates key
physiological processes, such as nutrient resorption, cessation of cambial activity, and
cold acclimation (Mu et al., 2023). Our analysis showed that trees with larger DBH
tended to exhibit later cessation of xylem formation (Fig.S4) and that greater
phenological variability in autumn coincided with higher cell production across plots.
This suggests that prolonged cambial activity in certain individuals may contribute to
both enhanced growth and increased variation in phenological timing. Modeling studies
have also shown that mismatches between photoperiod and temperature under warming
scenarios can delay dormancy and increase frost risk (Rinne et al., 2018; Maurya and
Bhalerao, 2017). Together, these findings indicate that while increased variability in
autumn phenology may promote growth in some individuals, it may also reduce
synchrony at the stand level. This mismatch could weaken seasonal coordination and
ultimately reduce the resilience to environmental stress of trees in cold climates (He et

al., 2025; Way and Montgomery, 2015).

4.3 Sampling challenges from autumn phenological variability

The asynchronous nature of autumn phenology, reflected in the dispersed timings of
growth cessation among individuals, presents significant challenges for phenological
monitoring and the standardization of sampling protocols. These challenges may
introduce substantial uncertainty in forest carbon modeling, as the timing of
phenological events is closely linked to the process of carbon sequestration (Silvestro
et al., 2025; Gallinat et al., 2015). Unlike spring phenology, which is typically
characterized by a relatively synchronized onset, autumn phenology exhibits a broader
temporal spread. This increased variability complicates efforts to identify
representative phenological phases at the stand level and makes it more difficult to

accurately assess the duration of growth. One key challenge lies in defining a sampling
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window that adequately captures the complete range of growth cessation. If sampling
ends too early, late-growing individuals may be excluded, leading to biased estimates
of population-level phenological timing and obscuring true interannual variability
(Keenan et al., 2014). Moreover, the elevated dispersion of autumn phenology increases
the sensitivity of phenological metrics to sample size, amplifying the risk of uncertainty

when relying on a limited number of individuals.

Refining sampling strategies in xylem phenology is essential for improving the
efficiency, reliability, and generalizability of phenological assessments. Our results
show that tree size (DBH) significantly influences autumn phenology. Although small
sample sizes (i.e., 3-5 trees per site) are common in earlier studies (Wang et al., 2023;
Liu et al., 2019; Rossi et al., 2006b), they are typically accompanied by strict selection
criteria, such as choosing trees of similar age and size, to reduce the variability of the
sample. This may induce a higher bias if not considered, especially important for
autumn phenological traits, which are more sensitive to the structural differences

among individuals.

While this selective-sampling approach helps to control unwanted variation, it may not
fully capture the natural heterogeneity across the stand. Our findings underscore the
value of increasing sample size to better represent phenological variability at the
population level. According to our results, sampling 27 trees yields estimates of xylem
phenology with 95 percent confidence and a margin of error of about one week. In
addition to increasing sample size, extending the observation period is equally
important to account for late-growing individuals and ensure that the complete duration
of phenological phases is captured. These adjustments are expected to enhance the
detection of interannual variability and provide a more robust basis for modeling forest
phenology and growth dynamics, but involve higher costs for sample and data
collection. The development of remote sensing tools to estimate xylem phenology could
contribute to improving the estimations as well as reducing the costs for growth

monitoring.
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5 Conclusion

This study provides the first quantitative assessment of individual variability in xylem
phenology using a dataset based on a wide weekly monitoring of over 800 balsam fir
trees across five consecutive years. We identified a marked seasonal asymmetry in
phenological synchrony. In particular, the phenological phases in spring, triggered
mainly by environmental signals, were more synchronized among individuals than
autumn phenology, which is affected by both internal and external drivers. The
observed asynchrony in autumn phenology primarily reflects variation in the duration
of growth among individuals and is associated with higher wood production. Given the
pronounced variability in autumn phenology, our study has assessed a sample size of
27 trees to achieve 95% confidence in estimating xylem phenology with a margin of
error of 1 week. Failing to account for the seasonal heterogeneity in growth reactivation
and cessation may result in underestimating the dynamics of growth and carbon
sequestration into the wood, mainly during the late season in autumn. Our findings
highlight the importance of better incorporating both seasonal and individual variability
into forest carbon models to improve predictions of boreal forest productivity under

current or future climates.
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Mean duration of different xylem phenological phases between plots in balsam fir.
Different letters indicate significant differences between each phenological phase (p <
0.05)

Year
Phenology
2018 2019 2020 2021 2022
F“S“Zl;ll?rgmg 0.845.50  11.545.6° 103+4.7° 82443%  9.9+5.4A
First wall-

. : 10.3£4.8%  10.8£5.4%  7.0+4.1% 1224424  8.6x4.7°
thickening cell

FISUMAIE 100480 704508 694514 8.4:40° 10,6453

cell
Ending of cell
nding of ce 2214895 13.7+5.6 184+7.7% 16.0+6.2% 20.2+8.6
enlargement
Endingofeell wall-— 1o 5 g 6¢  13.445.9% 1982865 17.769.48  17.147.2°
thickening




655  Table 2

656  Minimum sample size for each phenological phase for 95% confidence level at different
657  margins of error (1, £2, +3, and +4)

Margin of error (+ days)

Phenology
+1 +2 +3 +4
First enlarging cell 232 61 29 17
First wall-thickening cell 241 62 30 18
First mature cell 185 50 24 15
End of cell enlargement 341 88 40 24
End of cell wall-thickening 387 98 45 27
Average 277 71 34 20
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