PROGRAMME DE CONNAISSANCE DES ÉCOSYSTÈMES FORESTIERS DU QUÉBEC MÉRIDIONAL

Rapport de classification écologique Érablière à bouleau jaune de l'ouest

Service de l'évaluation de l'offre/Service de la recherche appliquée

Direction des inventaires forestiers/Direction de la recherche forestière

Forêt Québec

Ministère des Ressources naturelles du Québec

MARS 2000 (revisé)

Rapport de classification écologique du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Équipe de travail

Classification et rédaction :

Jocelyn Gosselin, ingénieur forestier

Pierre Grondin, ingénieur forestier, M. Sc., Jean-Pierre Saucier, ingénieur forestier, D. Sc.

Collaborateurs:

Jean-François Bergeron, biologiste, M. Sc.

Philippe Racine, ingénieur forestier Jacques Blouin, ingénieur forestier

Tableaux:

Jean-Pierre Berger, technicien forestier

Éric Vaillancourt, technicien forestier

Cartes et figures :

Hugo Therrien, ingénieur forestier

Dessins:

Denis Grenier, technicien en arts graphiques et dessins

Secrétariat :

Berthe Daviault, secrétaire Linda Godin, secrétaire

Validation des sères physiographiques : Pierre Leboeuf, technicien forestier

Citation recommandée :

Gosselin J., P. Grondin et J.-P. Saucier, 1999. Rapport de classification écologique du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest. Ministère des Ressources naturelles du Québec, Direction des

inventaires forestiers.

@ Gouvernement du Québec Dépôt légal Bibliothèque nationale du Québec ISBN: 2-551-19204-8

RN: RN99-3065

TABLE DES MATIÈRES

1.	. INTR	ODUCTION	
2.	. MÉT	HODOLOGIE	
		STÈME HIÉRARCHIQUE	
	2.1. 31	Zones et sous-zones de végétation	 د
	2.1.2.	Domaines et sous-domaines bioclimatiques	
	2.1.3.	Régions écologiques et sous-régions écologiques	د
	2.1.4.	Unités de paysage régional et districts écologiques	
	2.1.5.	Étage de végétation	12
	2.1.6.	Types écologiques et types forestiers	12
		HANTILLONNAGE	
	2.3. Mf	THODE DE CLASSIFICATION	
	2.3.1.	Types de milieux physiques	
	2.3.2.	Groupes d'espèces indicatrices	
	2.3.3.	Types forestiers	
	2.3.4.	Végétations potentielles	
	2.3.5.	Types écologiques	
	2.3.6.	Complexes pédologiques	19
	2.3.7.	Sères physiographiques	20
3.	ppéc		
Э.		ENTATION DU TERRITOIRE	
	3.1. Lo	CALISATION GÉOGRAPHIQUE	23
	3.2. CA	RACTÉRISTIQUE CLIMATIQUE RÉGIONALE	23
	3.3. GÉ	DLOGIE, HYDROLOGIE, PHYSIOGRAPHIE ET DÉPÔTS DE SURFACE	26
	3.4. VÉ	GÉTATION RÉGIONALE	36
4.	TYPE	S DE MILIEUX PHYSIQUES	41
	4.1. DÉ	TERMINATION DES TYPES DE MILIEUX PHYSIQUES	41
	4.2 PRI	SENTATION DES TYPES DE MILIEUX PHYSIQUES	44
5.		es d'espèces indicatrices	
٥.			
	5.1. GR	DUPES ÉCOLOGIQUES ÉLÉMENTAIRES	47
	5.1.1.	Détermination des groupes écologiques élémentaires	47
	5.1.2.	Présentation des groupes écologiques élémentaires	60
	5.2. GR	DUPES D'ESPÈCES INDICATRICES	62
	5.2.1.	Détermination et reconnaissance des groupes d'espèces indicatrices	62
	5.2.2.	Présentation des groupes d'espèces indicatrices	
6.	TYPE	S FORESTIERS	95
7.	VÉCÉ	TATIONS POTENTIELLES	0.0
	7.1. DÉ1	ERMINATION ET RECONNAISSANCE DES VÉGÉTATIONS POTENTIELLES	99
		CRIPTION DES VÉGÉTATIONS POTENTIELLES	
8.	TYPE	S ÉCOLOGIQUES	123
	8.1. DÉT	ERMINATION ET RECONNAISSANCE DES TYPES ÉCOLOGIQUES	123
	8.2. PRÉ	SENTATION DES TYPES ÉCOLOGIQUES	173
	8.3. DES	CRIPTION DE TYPES ÉCOLOGIQUES	144
9.		PLEXES PÉDOLOGIOUES	
7.	COM	LEAES FEDULUGIUUES	150

10. SÈR	ES PHYSIOGRAPHIQUES	161
	RÉGION ÉCOLOGIQUE 3A (COLLINES DE L'OUTAQUAIS ET DU TÉMISCAMINGUE)	
	RÉGION ÉCOLOGIQUE 3B (COLLINES DU LAC NOMININGUE)	
	LIOGRAPHIE	

LISTE DES TABLEAUX

TABLEAU 2.1 : DÉFINITIONS DES NIVEAUX HIÉRARCHIQUES DU SYSTÈME DE CLASSIFICATION ÉCOLOGIQUE DU TERRITORE MIS AU POINT PAR LE MINISTÈRE DES RESSOURCES NATURELLES DU QUÉBEC
TABLEAU 2.2 : NIVEAUX SUPÉRIEURS DU SYSTÈME HIÉRÁRCHIQUE DE CLASSIFICATION ÉCOLOGIQUE DU TERRITOIRE DU MINISTÈRE DES RESOURCES NATURELLES DU QUÉBEC
MINISTÈRE DES RESSOURCES NATURELLES DU QUÉBEC
TABLEAU 3.1 : CARACTÉRISTIQUES CLIMATIQUES ET GÉOLOGIE DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
BOULEAU JAUNE DE L'OUEST
TABLEAU 3.2 : CARACTÉRISTIQUES PHYSIOGRAPHIQUES ET DÉPÔTS DE SURFACE DES RÉGIONS ÉCOLOGIQUES DU SOUS- DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST *
DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST *
TABLEAU 3.3 : CARACTÉRISTIQUES PHYSIOGRAPHIQUES ET DÉPÔTS DE SURFACE DES UNITÉS DE PAYSAGE RÉGIONAL DE LA RÉGION ÉCOLOGIQUE 3A DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST* TABLEAU 3.4 : CARACTÉRISTIQUES PHYSIOGRAPHIQUES ET DÉPÔTS DE SURFACE DES UNITÉS DE PAYSAGE RÉGIONAL DE LA RÉGION ÉCOLOGIQUE 3B DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST* TABLEAU 3.5 : DESCRIPTION GÉNÉRALE DE LA VÉGÉTATION RÉGIONALE DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST* TABLEAU 4.1 : TEXTURE-TERRAIN DE L'HORIZON B DES DÉPÔTS DE SURFACE DES RÉGIONS ÉCOLOGIQUES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST (1). 42 TABLEAU 4.2 : PIERROSITÉ DES DÉPÔTS DE SURFACE DES RÉGIONS ÉCOLOGIQUES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST (1). 43 TABLEAU 4.3 : TYPES DE MILIEUX PHYSIQUES DE LA RÉGION ÉCOLOGIQUE 3A DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST 45 TABLEAU 4.3 : TYPES DE MILIEUX PHYSIQUES DE LA RÉGION ÉCOLOGIQUE 3B DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
LA RÉGION ÉCOLOGIQUE 3A DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST*
TABLEAU 3.4 : CARACTÉRISTIQUES PHYSIOGRAPHIQUES ET DÉPÔTS DE SURFACE DES UNITÉS DE PAYSAGE RÉGIONAL DE LA RÉGION ÉCOLOGIQUE 3B DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST*
LA RÉGION ÉCOLOGIQUE 3B DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST*
TABLEAU 3.5 : DESCRIPTION GÉNÉRALE DE LA VÉGÉTATION RÉGIONALE DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 4.1 : TEXTURE-TERRAIN DE L'HORIZON B DES DÉPÔTS DE SURFACE DES RÉGIONS ÉCOLOGIQUES DU SOUS- DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST (1)
DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST (1)
TABLEAU 4.2 : PIERROSITÉ DES DÉPÔTS DE SURFACE DES RÉGIONS ÉCOLOGIQUES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 4.3 : TYPES DE MILIEUX PHYSIQUES DE LA RÉGION ÉCOLOGIQUE 3A DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 4.4 : TYPES DE MILIEUX PHYSIQUES DE LA RÉGION ÉCOLOGIQUE 3B DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 5.1 : PRÉFÉRENCES¹ DES GROUPES ÉCOLOGIQUES ÉLÉMENTAIRES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 5.2 : RICHESSE RELATIVE DES GROUPES ÉCOLOGIQUES ÉLÉMENTAIRES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 5.3 : RICHESSE RELATIVE DES GROUPES ÉCOLOGIQUES ÉLÉMENTAIRES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LE PH DE L'HUMUS
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LE PH DE L'HUMUS
TABLEAU 5.4 : RÉGIME HYDRIQUE DES GROUPES ÉCOLOGIQUES ÉLÉMENTAIRES ET RICHESSE RELATIVE DU SOUS- DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LE SEEPAGE
DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LE SEEPAGE
TABLEAU 5.5 : RICHESSE RELATIVE DES GROUPES ÉCOLOGIQUES ÉLÉMENTAIRES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LA PENTE ARRIÈRE57 TABLEAU 5.6 : RICHESSE RELATIVE DES GROUPES ÉCOLOGIQUES ÉLÉMENTAIRES DU SOUS-DOMAINE BIOCLIMATIONE DE
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LA PENTE ARRIÈRE57 TABLEAU 5.6 : RICHESSE RELATIVE DES GROUPES ÉCOLOGIQUES ÉLÉMENTAIRES DU SOUS-DOMAINE BIOCLIMATIONE DE
l'ABLEAU 5.6 : RICHESSE RELATIVE DES GROUPES ÉCOLOGIQUES ÉLÉMENTAIRES DU SOUS-DOMAINE BIOCLIMATIOUE DE
I 'ED ADI IÈDE À DOUB PAU LAUNE DE L'OVERSE ON ONLE
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LE TYPE D'HUMUS OU DE L'HORIZON ORGANIQUE58
l'ableau 5.7 : Richesse relative des groupes écologiques élémentaires du sous-domaine bioclimatique de
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LA RICHESSE FLORISTIQUE
l'ABLEAU 5.8 : Préférences des groupes d'espèces indicatrices du sous-domaine bioclimatique de
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 5.9 : RICHESSE RELATIVE DES GROUPES D'ESPÈCES INDICATRICES DU SOUS-DOMAINE BIOCLIMATIQUE DE
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 5.10 : CLASSIFICATION DES GROUPES D'ESPÈCES INDICATRICES EN FONCTION DE LA RICHESSE RELATIVE, DU
RÉGIME HYDRIQUE, DES PERTURBATIONS OU DES ORIGINES ET DES ESSENCES FORESTIÈRES DU SOUS-DOMAINE
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST
TABLEAU 5.11 : RÉGIME HYDRIQUE ET RICHESSE RELATIVE DES GROUPES D'ESPÈCES INDICATRICES DU SOUS-DOMAINE
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LE SEEPAGE
TABLEAU 5.12 : RICHESSE RELATIVE DES GROUPES D'ESPÈCES INDICATRICES DU SOUS-DOMAINE BIOCLIMATIQUE DE
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LA PENTE ARRIÈRE
l'ableau 5.13 : Richesse relative des groupes d'espèces indicatrices du sous-domaine bioclimatique de
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LE TYPE D'HUMUS OU DE L'HORIZON ORGANIQUE88

Tableau 5.14 : Richesse relative des groupes d'espèces indicatrices du sous-domaine bioclimatique de	
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST, SELON LA RICHESSE FLORISTIQUE	89
TABLEAU 5.15 : RÉPARTITION DES GROUPES D'ESPÈCES INDICATRICES PAR SOUS-RÉGIONS ÉCOLOGIQUES DU SOUS-	
DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	90
TABLEAU 6.1 : LISTE DES TYPES FORESTIERS PAR TYPE DE COUVERT ET RÉGION ÉCOLOGIQUE DU SOUS-DOMAINE	
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	97
Tableau 7.1 : Végétation potentielle estimée à partir des relations entre les groupes d'espèces	
INDICATRICES ET LES ESSENCES SERVANT À DÉFINIR LES VÉGÉTATIONS POTENTIELLES DU SOUS-DOMAINE	
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	00
Tableau 7.2 : Relation entre les végétations potentielles classifiées et les groupes d'espèces	
INDICATRICES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	04
Tableau 7.3 : Liste des végétations potentielles par sous-région et leurs principaux groupes d'espèces	;
INDICATRICES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST1	10
Tableau 7.4 : Relation entre les végétations potentielles, les essences et les origines du sous-domaini	E
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	18
Tableau 7.5 : Liste des végétations potentielles par stade évolutif du sous-domaine bioclimatique de	
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST1	19
TABLEAU 8.1 : RELATION ENTRE LES GROUPES D'ESPÈCES INDICATRICES, LES VÉGÉTATIONS POTENTIELLES ET LES	
TYPES DE MILIEU PHYSIQUE DANS LE BUT DE FORMER LES TYPES ÉCOLOGIQUES DU SOUS-DOMAINE	
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	24
Tableau 8.2 : Répartition des types écologiques par sous-région écologique du sous-domaine	
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	40
Tableau 8.3 : Relation entre les types écologiques, les essences et les origines du sous-domaine	
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	41
Tableau 8.4 : Liste des types écologiques selon le régime hydrique et la richesse relative des groupes	
D'ESPÈCES INDICATRICES DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST 14	42

LISTE DES FIGURES

FIGURE 2.1 : ZONES ET SOUS-ZONES DE VÉGÉTATION ET DOMAINES BIOCLIMATIQUES DU QUÉBEC	10
FIGURE 2.2: CLASSIFICATION HIÉRARCHIQUE DU DOMAINE BIOCLIMATIQUE JUSQU'AUX DISTRICTS ÉCOLOGIQUES DI	Е
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	13
FIGURE 2.3: ÉTAPES ET PRODUITS DE LA CLASSIFICATION DE LA VÉGÉTATION DU MRNQ	16
FIGURE 3.1 : DÉCOUPAGE DES FEUILLETS AU 1\\$0 000, HYDROGRAPHIE ET TOPONYMIE DU SOUS-DOMAINE	
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	24
FIGURE 3.2: RÉGIONS ÉCOLOGIQUES, SOUS-RÉGIONS ÉCOLOGIQUES ET UNITÉS DE PAYSAGE RÉGIONAL DU SOUS-	2
DOMAINE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	25
FIGURE 3.3 : UNITÉS DE PAYSAGE RÉGIONAL, DISTRICTS ÉCOLOGIQUES ET TYPE DE RELIEF DU SOUS-DOMAINE	22
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	28
FIGURE 3.4 : UNITÉS DE PAYSAGE RÉGIONAL, DISTRICTS ÉCOLOGIQUES ET ALTITUDE MOYENNE DU SOUS-DOMAINE	
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	29
FIGURE 3.5 : UNITÉS DE PAYSAGE RÉGIONAL, DISTRICTS ÉCOLOGIQUES ET DÉPÔT DOMINANT DU SOUS-DOMAINE	
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'EST	30
FIGURE 3.6 : UNITÉS DE PAYSAGE RÉGIONAL, DISTRICTS ÉCOLOGIQUES ET DÉPÔT SOUS-DOMINANT DU SOUS-DOMAI	NE
BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	31
FIGURE 5.1 : EXEMPLE DE CALCUL DE DIFFÉRENTS INDICES EN RAPPORT AVEC LA FRÉQUENCE-ABONDANCE (FA)	48
FIGURE 5.2 : CLÉ D'IDENTIFICATION DES GROUPES D'ESPÈCES INDICATRICES DU SOUS-DOMAINE DE L'ÉRABLIÈRE À	
BOULEAU JAUNE DE L'OUEST (RÉGIONS ÉCOLOGIQUES 3A ET 3B)	64
FIGURE 6.1 : CLÉ D'IDENTIFICATION DE LA PHYSIONOMIE ET DU COUVERT ARBORESCENT DU TYPE FORESTIER	96
FIGURE 7.1 : CLÉ D'IDENTIFICATION DES VÉGÉTATIONS POTENTIELLES DU SOUS-DOMAINE BIOCLIMATIQUE DE	
L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	. 105
FIGURE 7.2 : VÉGÉTATION POTENTIELLE FE2 (ÉRABLIÈRE À TILLEUL) POUR LE SOUS-DOMAINE DE L'ÉRABLIÈRE À	
BOULEAU JAUNE DE L'OUEST	.112
FIGURE 7.3 : VÉGÉTATION POTENTIELLE FE3 (ÉRABLIÈRE À BOULEAU JAUNE) POUR LE SOUS-DOMAINE DE L'ÉRABLI	IÈRE
À BOULEAU JAUNE DE L'OUEST	113
FIGURE 7.4 : VÉGÉTATION POTENTIELLE FE6 (ÉRABLIÈRE À CHÊNE ROUGE) POUR LE SOUS-DOMAINE DE L'ÉRABLIÈR	RE À
BOULEAU JAUNE DE L'OUEST	114
FIGURE 7.5 : VÉGÉTATION POTENTIELLE MJ2 (BÉTULAIE JAUNE À SAPIN) POUR LE SOUS-DOMAINE DE L'ÉRABLIÈRE A	À
BOULEAU JAUNE DE L'OUEST	.115
FIGURE 7.6 : VÉGÉTATION POTENTIELLE RE2 (PESSIÈRE NOIRE À MOUSSES OU À ÉRICACÉES) POUR LE SOUS-DOMAIN	NE
DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	116
FIGURE 7.7 : VÉGÉTATION POTENTIELLE RS1 (SAPINIÈRE À THUYA) POUR LE SOUS-DOMAINE DE L'ÉRABLIÈRE À	
BOULEAU JAUNE DE L'OUEST	117
Figure 8.1 : Clé des types écologiques du sous-domaine de l'érablière à bouleau jaune de l'ouest	
(RÉGIONS ÉCOLOGIQUES 3A ET 3B)	133
FIGURE 8.2 : IDENTIFICATION DU TYPE ÉCOLOGIQUE SUR LE TERRAIN	139
FIGURE 10.1 : SÈRE PHYSIOGRAPHIQUE DE LA SOUS-RÉGION ÉCOLOGIQUE 3A-S (COLLINES DU LAC KIPAWA) DU SOL	JS-
DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	162
FIGURE 10.2 : SÈRE PHYSIOGRAPHIQUE DE LA SOUS-RÉGION ÉCOLOGIQUE 3A-M (COLLINES DU LAC DUMONT) DU	
SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	163
FIGURE 10.3 : SÈRE PHYSIOGRAPHIQUE DE LA SOUS-RÉGION ÉCOLOGIQUE 3A-T (HAUTES COLLINES DU LAC SAINT-	
PATRICE) DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	164
FIGURE 10.4 : SÈRE PHYSIOGRAPHIQUE DE LA SOUS-RÉGION ÉCOLOGIQUE 3B-M (HAUTES COLLINES DU LAC SIMON)	DU
SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	168
FIGURE 10.5 : SÈRE PHYSIOGRAPHIQUE DE LA SOUS-RÉGION ÉCOLOGIQUE 3B-T (COLLINES DU RÉSERVOIR KIAMIKA))
DU SOUS-DOMAINE BIOCLIMATIQUE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST	169

RAPPORT DE CLASSIFICATION ÉCOLOGIQUE DU SOUS-DOMAINE DE L'ÉRABLIÈRE À BOULEAU JAUNE DE L'OUEST

1. INTRODUCTION

Contexte forestier

Quels que soient les intérêts des utilisateurs de la forêt, les écosystèmes forestiers sont d'abord des milieux de vie où des centaines d'espèces sont en interrelation, entre elles et leur milieu physique. Les forêts ne sont plus perçues uniquement comme des réservoirs de matière ligneuse.

Dans le contexte de l'aménagement forestier durable, la santé économique de l'activité forestière repose, bien entendu, sur la capacité des forêts à se renouveler et à produire du bois de façon soutenue, mais elle repose aussi sur la protection de l'environnement forestier et une saine gestion forestière. De plus, les stratégies de gestion forestière et les pratiques forestières visent à assurer la conservation de la diversité biologique et la protection de l'environnement forestier. Il est donc clair que la mise en place d'une saine gestion forestière orientée selon les principes susmentionnés requiert des connaissances sur les écosystèmes forestiers qui sont sujets à l'aménagement. C'est le but de la classification écologique.

La classification écologique au MRN

Depuis 1980, des changements majeurs dans les orientations politiques et la législation forestière ont permis le développement d'un programme de connaissance des écosystèmes forestiers au MRN (Saucier et Robert, 1995). Les besoins de connaissance sur les écosystèmes forestiers et la mise en place d'applications dérivées de la synthèse des connaissances écologiques se sont accrus depuis le dépôt des recommandations du Bureau d'audiences publiques sur l'environnement (BAPE) (1984) pour l'utilisation des pesticides contre la tordeuse des bourgeons de l'épinette (TBE). Dès 1984, le BAPE recommandait qu'un cadre de connaissances écologiques soit mis en place pour améliorer les stratégies d'aménagement forestier ayant pour objectif le contrôle des ravageurs.

En janvier 1985, un décret du Conseil des ministres amène la préparation et la réalisation du cadre écologique de référence des territoires forestiers afin, notamment, de répondre aux préoccupations soulignées par le BAPE mais également pour améliorer la gestion et les pratiques forestières. Le dépôt de la **Loi sur les forêts** en 1986 visant l'atteinte du rendement soutenu, la protection de l'environnement forestier et l'usage des ressources multiples de la forêt explique bien la mise en place de ce nouveau mandat de connaissances écologiques au Ministère.

Dès 1985, une équipe multidisciplinaire est responsable des travaux d'inventaire écologique, de classification de la végétation et de cartographie écologique.

Depuis le début des années 1990, de nombreux essais des applications issues des outils écologiques ont été réalisés dans plusieurs régions avec la participation de forestiers et techniciens du MRN, de spécialistes des institutions d'enseignement et des représentants de l'industrie forestière. Pour les fins d'inventaire forestier au MRN et différents projets d'institutions d'enseignement et d'industries forestières, les produits de classification écologique suivants ont été diffusés : clés d'identification des groupes d'espèces indicatrices, clés d'identification des types forestiers et clés d'identification des végétations potentielles.

En 1994, la Stratégie de protection des forêts suggérait des échéanciers de production des outils écologiques comme les cartes écoforestières et les guides de reconnaissance des milieux physiques et des types forestiers. D'une part, les cartes écoforestières réalisées dans le cadre du troisième programme d'inventaire forestier ont été produites pour plus de la moitié du Québec méridional en 1998. D'autre part, les rapports de classification écologique réalisés pour chaque domaine bioclimatique seront disponibles au cours des années 1998 et 1999. Ces rapports présentent une synthèse des connaissances sur la végétation, le milieu physique et les relations sol-végétation.

Objectifs généraux

Le rapport de classification de la végétation présente l'information écologique selon des thèmes distincts qui correspondent aux différentes composantes de l'écosystème forestier. Il présente de façon claire, organisée et synthétique les résultats des analyses et des outils ou clés d'identification permettant de reconnaître sur le terrain les différentes unités de classification. Plusieurs tableaux ayant servi à l'analyse sont aussi présentés.

Les objectifs de la démarche de classification écologique sont :

- Acquérir des connaissances détaillées sur les écosystèmes forestiers, cela dans le cadre du programme de connaissance des écosystèmes forestiers du MRN.
- Offrir aux différents intervenants du milieu forestier (aménagistes, techniciens, consultants, spécialistes de la faune, de la récréation, de la conservation, etc.) un langage commun décrivant et expliquant le fonctionnement des écosystèmes forestiers.
- Diffuser, aux différentes clientèles, l'information écologique dans un cadre organisé.
- Offrir des outils servant à l'aménagement et à la gestion forestière.

Objectifs spécifiques

- Acquérir des connaissances détaillées sur la composition, la structure et la dynamique des écosystèmes forestiers ainsi que les relations sol-végétation.

- Exprimer les subdivisions territoriales naturelles par des travaux de cartographie écologique à des échelles variées (de 1/20 000 à 1/1 250 000).
- Fournir aux responsables de l'aménagement forestier des outils écologiques dédiés à la gestion et à l'aménagement forestier. De meilleures connaissances sur la composition et la dynamique des écosystèmes contribuent à bonifier la planification et le choix des traitements sylvicoles.
- Fournir aux spécialistes des secteurs de l'aménagement multiressources, de l'aménagement de la faune, de la protection de l'environnement forestier et de la conservation, des outils permettant d'identifier et de reconnaître des attributs écologiques du milieu physique et de la végétation forestière. Ceci afin d'améliorer la planification et la réalisation de leurs activités.
- Fournir les connaissances écologiques de base nécessaires aux travaux d'évaluation de la productivité des stations.

Produits dérivés et utilisateurs

Les outils suivants sont présentés dans les rapports de classification de la végétation : grilles des types de milieux physiques, clés des groupes d'espèces indicatrices, clés des types forestiers, clés des végétations potentielles, clés des types écologiques. Les sères physiographiques produites pour chaque région écologique sont consultées par les photos-interprètes pour bonifier les cartes écoforestières (1/20 000) par l'ajout du type écologique.

L'ensemble des connaissances présentées dans les rapports de classification écologique sert d'assise à la préparation des guides de reconnaissance des types écologiques qui sont prévus pour une utilisation sur le terrain et dans la planification forestière.

La diffusion des produits obtenus de la classification écologique auprès des intervenants de la communauté forestière est une priorité. Les utilisateurs suivants font partie de notre clientèle :

- ingénieurs et techniciens forestiers des unités de gestion;
- ingénieurs forestiers des compagnies forestières et consultants en foresterie;
- écologistes et spécialistes de gestion intégrée des ressources;
- enseignants du niveau collégial ou universitaire;
- chercheurs:
- spécialistes d'aménagement du territoire, notamment, au niveau des MRC et des municipalités;
- biologistes et techniciens de la faune;
- personnel du secteur de la conservation et des parcs;
- organismes non gouvernementaux (ONG) et environnementalistes.

Mise en garde sur l'utilisation des rapports de classification

Afin de cheminer dans les différentes sections du rapport de classification et de tirer profit des interprétations et synthèses écologiques, le lecteur doit préférablement posséder des connaissances de base en écologie forestière. L'identification des différentes unités de classification (i.e. type de milieu physique, type forestier, végétation potentielle) nécessite la connaissance des dépôts de surface, des caractéristiques des sols et de la flore forestière.

L'ensemble des variables écologiques de topographie, les sols, les descripteurs de peuplement et la codification des espèces sont présentés dans le document de normes. Le Point d'observation écologique (MRN, 1994) est disponible à la Direction des inventaires forestiers. La majorité des espèces végétales est décrite et illustrée dans la Petite flore forestière (Les publications du Québec, 1990).

Pour toute information sur le contenu des rapports de classification et la classification écologique, veuillez contacter les auteurs :

M. Jean-Pierre Saucier Direction des inventaires forestiers Ministère des Ressources naturelles 880, chemin Sainte-Foy, 4^e étage Ouébec (Québec) G1S 4X4

Téléphone: (418) 627-8669 poste 4279

Télécopieur: (418) 643-1690

E-Mail: jean-pierre.saucier@mrn.gouv.qc.ca

2. MÉTHODOLOGIE

2.1. Système hiérarchique

Le système hiérarchique de classification écologique du territoire mis au point par le MRN présente onze niveaux hiérarchiques dont les limites cartographiques sont parfaitement emboîtées. Chaque niveau est défini par un ensemble de facteurs écologiques dont le nombre et la précision augmentent de l'échelle continentale à l'échelle locale. Le tableau 2.1 présente une définition succincte de chaque niveau tandis que le tableau 2.2 montre l'agencement des niveaux hiérarchiques supérieurs du système ainsi que la codification et les noms des régions écologiques.

2.1.1. Zones et sous-zones de végétation

Les zones de végétation inscrivent le territoire québécois dans la zonation mondiale de la végétation. Elles correspondent à une flore particulière, à des formations végétales distinctes et reflètent les grandes subdivisions climatiques. On subdivise les zones de végétation en sous-zones selon la physionomie de la végétation de fin de succession dominante dans le paysage. On observe trois zones de végétation au Québec :

- 1) La zone tempérée nordique qui subdivise en sous-zones de forêt décidue et de forêt mélangée. La forêt décidue se caractérise par l'abondance des forêts de feuillus nordiques. La forêt mélangée est rattachée à la forêt tempérée nordique car c'est dans cette sous-zone que les espèces méridionales, comme l'érable à sucre et son cortège floristique, trouvent leur limite nord et parce que les formations végétales dominantes présentent un caractère mixte. De plus, la richesse floristique de cette sous-zone demeure comparable à celle de la sous-zone décidue.
- 2) La zone boréale est caractérisée par les formations conifériennes sempervirentes. Elle comprend trois sous-zones :
 - la **forêt boréale continue** où les formations sont relativement denses et dominées par les espèces résineuses boréales ou les feuillus de lumière;
 - la taïga où domine la forêt coniférienne ouverte avec un tapis de lichens;
 - la toundra forestière qui se présente comme une mosaïque de forêts de densité variable et de toundra dominée par des arbustes et des lichens. La limite des arbres (épinette noire, épinette blanche et mélèze laricin) marque le passage de la zone boréale à la zone arctique.

3) La zone arctique est dominée par les formations arbustives ou herbacées. Elle ne compte qu'une seule sous-zone : le Bas-Arctique, caractérisé par l'absence d'arbres, la présence de pergélisol continu et une végétation de toundra dominée par des arbustes, des herbacées, des graminoïdes, des mousses ou des lichens.

Tableau 2.1 : Définitions des niveaux hiérarchiques du système de classification écologique du territoire mis au point par le ministère des Ressources naturelles du Québec

Niveau hiérarchique	Définition
Zone de végétation	Vaste territoire, à l'échelle continentale, caractérisé par la physionomie des formations végétales.
Sous-zone de végétation	Portion d'une zone de végétation caractérisée par la physionomie de la végétation de fin de succession dominante dans le paysage.
Domaine bioclimatique	Territoire caractérisé par la nature de la végétation de fin de succession exprimant l'équilibre entre le climat et les sites mésiques.
Sous-domaine bioclimatique	Portion d'un domaine bioclimatique qui présente des caractéristiques distinctes de végétation, révélant des différences du régime des précipitations ou des perturbations naturelles.
Région écologique	Territoire caractérisé par la composition et la dynamique forestière sur les sites mésiques ainsi que par la répartition des types écologiques dans le paysage.
Sous-région écologique	Portion d'une région écologique où la nature de la végétation des sites mésiques présente un caractère soit typique du domaine bioclimatique auquel elle appartient, soit plus méridional ou plus septentrional.
Unité de paysage régional	Portion de territoire caractérisée par une organisation récurrente des principaux facteurs écologiques permanents du milieu et de la végétation.
District écologique	Portion de territoire caractérisée par un pattern propre du relief, de la géologie, de la géomorphologie et de la végétation régionale.
Étage de végétation	Portion de territoire où l'altitude a une influence si marquée sur le climat que la structure et souvent la nature de la végétation sont modifiées. Celles-ci s'apparentent alors à celle de régions plus septentrionales.
Type écologique	Portion de territoire, à l'échelle locale, présentant une combinaison permanente de la végétation potentielle et des caractéristiques physiques de la station.
Type forestier	Portion d'un type écologique occupée par un écosystème forestier dont la composition et la structure actuelle sont distinctes.

Tableau 2.2 : Niveaux supérieurs du système hiérarchique de classification écologique du territoire du ministère des Ressources naturelles du Québec

Zone Sous-zone Domaine de de bioclimatique végétation		Sous- domaine bioclima- tique	Région écologique Sous-région écologique			Unité de paysage régional (numéro des unités)		
Tempérée nordique	Forêt ' décidue	1 Érablière à caryer cordiforme	-	la	Plaine du bas Outaouais et de l'archipel de Montréal	1a-T	Plaine du bas Outaouais et de l'archipel de Montréal	1, 2, 3
- 400 afdi		2 Érablière à		2a	Collines de la basse Gatineau	2a-T	Collines de la basse Gatineau	4, 5, 6
		tilleul	de l'est	2b	Plaine du Saint-Laurent	2b-T	Plaine du Saint-Laurent	7, 9, 10, 11, 12, 13, 201
				2c	Coteaux de l'Estrie	2c-T	Coteaux de l'Estrie	8
		3 Érablière à	de l'ouest	3a	Collines de l'Outaouais et du	3a-M	Collines du lac Dumont	20
		bouleau			Témiscamingue	3a-T	Collines du lac Saint-Patrice	16, 18, 19
		jaune				3a-S	Collines du lac Kipawa	14, 15, 17
				3b	Collines du lac Nominingue	3b-M		22, 23
			or are no common			3b-T	Collines du réservoir Kiamika	21, 24
			de l'est	3с	Hautes collines du bas Saint-Maurice	3c-M	Collines de Saint-Jérôme-Grand-Mère	
						3c-T	Hautes collines de Val-David-Lac- Mékinac	26, 28, 29
			40.000			3c-S	Massif du Mont-Tremblant	27
				3d	Coteaux des basses Appalaches	3d-M	Coteaux de la rivière Chaudière	31, 32, 33
						3d-T	Coteaux du lac Etchemin	34, 35, 36
	Samulanina					3d-S	Collines du Mont-Mégantic	30
	Forêt	4 Sapinière à	de l'ouest	<u>4a</u>	Plaines et coteaux du lac Simard	4a-T	Plaines et coteaux du lac Simard	37, 38
	mélangée	bouleau		4b	Coteaux du réservoir Cabonga	4b-M	Collines du lac Notawissi	42, 46
		jaune	62 (W			4b-T	Coteaux du réservoir Dozois	39, 41,45, 47
						4b-S	Coteaux du lac Yser	40, 43, 44
BOTTE NEW				4c	Collines du moyen Saint-Maurice	4c-M		54
			elikaritet Aresisea, a			4c-T		48, 49, 50, 51, 52, 53
	the second		de l'est	4d	Hautes collines de Charlevoix et du	4d-M	Hautes collines de Saint-Tite-des-Caps	
					Saguenay	4d-T	Hautes collines du mont des Éboulements	56, 57, 58
		,		4e	Plaine du lac Saint-Jean et du Saguenay	4e-T	Plaine du lac Saint-Jean et du Saguenay	59, 60
				4f	Collines des moyennes Appalaches	4f-M	Collines du lac Témiscouata	63
						4f-T	Collines et coteaux du lac	61, 62, 64, 65, 66,
							Pohénégamook	67, 202, 203
						4f-S	Collines du lac Humqui	68, 69
				4g	Côte de la Baie des Chaleurs	4g-T	Côte de la Baie des Chaleurs	70, 71, 72
				4h	Côte gaspésienne	4h-T	Côte gaspésienne	73, 74

Tableau 2.2 (suite)

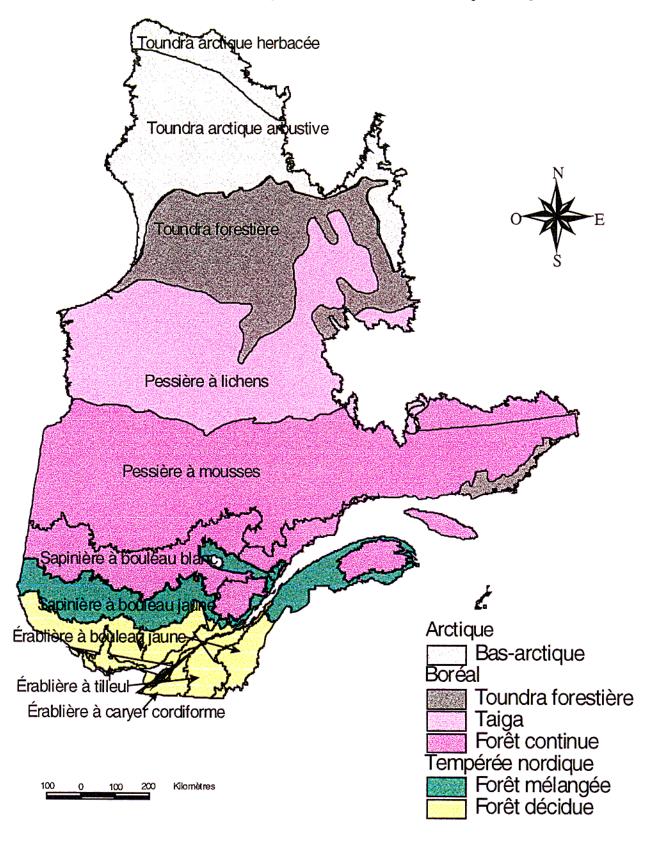
Boréale 💮	Forêt 🚁 📖	5 Sapinière	à de l'ouest		Plaine de l'Abitibi	5a-T	Plaine de l'Abitibi	75, 76, 77, 78, 79
124	boréale	bouleau	MEDICE FALLS	_5b	Coteaux du réservoir Gouin	5b-T	Coteaux du réservoir Gouin	80, 81, 82, 83
	continue	blanc		5c	Collines du haut Saint-Maurice	5c-M	Collines du Grand-Lac-Bostonnais	90
				é 2		5c-T	Collines du lac Lareau	84, 85, 86, 87, 89
	Since (March			ŧ.		5c-S	Collines du lac Trenche	88
				5d	Collines ceinturant le lac Saint-Jean	5d-M	Collines du lac Simoncouche	94
						5d-T	Collines du lac Onatchiway	95, 96, 97, 98, 99,
				Ĭ				100
			de l'est	5e	Massif du lac Jacques-Cartier	5e-T	Monts du lac des Martres	91, 92
						5e-S	Hautes collines du lac Jacques-Cartier	93
				5f	Massif du Mont Valin	5f-T	Mont du lac des Savanes	103
						5f-S	Hautes collines du lac Poulin de	101, 102
							Courval	
t kandan	andan.			5g	Hautes collines de Baie-Comeau-	5g-T	Hautes collines de Baie-Comeau-Sept-	104, 105, 106, 107
					Sept-Îles		Îles	
				5h	Massif gaspésien	5h-T	Massif gaspésien	108, 109, 112, 113
				5i	Haut massif gaspésien	5i-T	Monts de Murdochville	111
						5i-S	Monts du Mont-Albert	110
				5j	Île d'Anticosti	5j-T	Île d'Anticosti	114, 115, 116, 204
				5k	Îles-de-la-Madeleine	5k-T	Îles-de-la-Madeleine	117
		6 Pessière	à de l'ouest	6a	Plaine du lac Matagami	6a-T	Plaine du lac Matagami	118, 119, 120,
		mousses		112				121, 122, 123
19-19				6b	Plaine de la baie de Rupert	6b-T	Plaine de la baie de Rupert	124, 125
				6c	Plaine du lac Opémisca	6c-T	Plaine du lac Opémisca	126, 127, 129
				6d	Coteaux du lac Assinica	6d-T	Coteaux du lac Assinica	133, 134, 135
1000年14日				6e	Coteaux de la rivière Nestaocano	6e-T	Coteaux de la rivière Nestaocano	128, 130 131, 132
				6f	Coteaux du lac Mistassini	6f-T	Coteaux du lac Mistassini	136
. Whole	表现数据			6g	Coteaux du lac Manouane	6g-T	Coteaux du lac Manouane	137, 138, 139
			de l'est	6h	Collines du lac Péribonka	6h-T	Collines du lac Péribonka	140, 141, 142,
				**************************************				143, 144
1990			Marie Control	6i	Hautes collines du réservoir Outardes	6i-T	Hautes collines du réservoir Manic 3	146, 147, 148
						6i-S	Hautes collines du lac Guinecourt	145
				6j	Hautes collines du lac Cacaoui	6j-T	Hautes collines du lac Cacaoui	149, 150
	Taiga	7 Pessière	à -		-	-	-	-
		lichens			·			
	Toundra	8 Toundra	-		-	-	- .	-
	forestière	forestière	:					
rctique		9 Tounds	a -		-	-	-	-
	arctique	arctiqu						
		arbustiv						
		10 Tounds			-	-	-	-
		arctiqu						
	ergens and decidence	herbace						

Note : Certaines appellations de sous-régions écologiques peuvent différer de celles mentionnées dans le texte à cause d'une révision récente de ce tableau

2.1.2. Domaines et sous-domaines bioclimatiques

On compte dix domaines bioclimatiques au Québec. Ce sont des territoires caractérisés par la nature de la végétation de fin de succession exprimant l'équilibre entre le climat et les sites mésiques. La figure 2.1 montre les limites des domaines bioclimatiques de l'ensemble du Québec. Certains domaines du Québec méridional sont subdivisés en sous-domaines bioclimatiques selon qu'ils présentent des caractéristiques distinctes de végétation révélant des différences du régime de précipitations ou des perturbations naturelles. C'est le niveau hiérarchique du sous-domaine qui sert d'assise aux rapports de classification écologique.

Le domaine de l'érablière à caryer cordiforme, qui occupe une portion restreinte du Québec méridional dans laquelle le climat est uniforme, n'est pas subdivisé en sous-domaines. Dans le domaine de l'érablière à tilleul, la répartition des chênaies rouges et les précipitations permettent de distinguer un sous-domaine de l'ouest, plus sec, et un sous-domaine de l'est où les précipitations sont plus abondantes. Le même critère d'abondance des précipitations, auquel s'ajoute celui de la distribution des pinèdes à pin blanc et pin rouge, sert à séparer les sous-domaines de l'ouest et de l'est du domaine de l'érablière à bouleau jaune.


Dans le domaine de la **sapinière à bouleau jaune**, l'abondance des précipitations est comparable d'ouest en est. Cependant, une subdivision s'impose sur la base de l'abondance du bouleau jaune et de la fréquence des pinèdes. Le sous-domaine de l'ouest est caractérisé par la présence constante des bétulaies jaunes à sapin sur les sites mésiques tandis que la sapinière à bouleau jaune domine ces mêmes sites dans le sous-domaine de l'est. Les pinèdes à pin blanc ou rouge sont plus abondantes dans l'ouest.

La subdivision du domaine de la sapinière à bouleau blanc en sousdomaines se base sur le régime des précipitations et coïncide aussi avec des changements dans le relief. Le sous-domaine de l'ouest reçoit des précipitations plus faibles que dans celui de l'est et présente un relief peu accidenté, généralement de faible amplitude. Le cycle des feux y est plus court que dans l'est, ce qui se traduit par l'abondance des peuplements feuillus ou mélangés composés d'essences de lumière (peuplier fauxtremble, bouleau blanc ou pin gris).

Mai 1999

Site dont les caractéristiques de pente, de texture, de pierrosité et d'épaisseur du dépôt de surface ainsi que d'alimentation en eau, sont moyennes ou ni trop favorables, ni trop limitantes.

Figure 2.1 : Zones et sous-zones de végétation et domaines bioclimatiques du Québec

Le climat du sous-domaine de l'est subit l'influence maritime et les précipitations y sont généralement plus abondantes. Ceci influence le cycle des feux qui y est plus long. Ces deux sous-domaines sont aussi affectés périodiquement par des épidémies de la TBE qui marquent fortement le paysage.

Le domaine bioclimatique de la **pessière à mousses** se subdivise aussi en sous-domaines sur la base des précipitations et du relief. Ces facteurs expliquent la différence dans le régime des feux dont le cycle est beaucoup plus long à l'est qu'à l'ouest. La fréquence des sapinières et la proportion du sapin dans les pessières sont aussi plus élevées dans le sous-domaine de l'est.

Les domaines bioclimatiques de la pessière à lichens, de la toundra forestière, de la toundra arctique arbustive et de la toundra arctique herbacée font partie du Québec septentrional. Puisque nous ne disposons d'aucune donnée dans ces domaines bioclimatiques, ils ne sont pas subdivisés en sous-domaines ni en régions écologiques et ne font pas l'objet de rapports de classification écologique.

2.1.3. Régions écologiques et sous-régions écologiques

Les six domaines bioclimatiques du Québec méridional sont subdivisés en régions écologiques qui sont caractérisées par la composition et la dynamique forestière sur les sites mésiques ainsi que par la répartition des types écologiques (combinant la végétation potentielle et le milieu physique) dans le paysage.

Les régions écologiques sont parfois subdivisées en sous-régions qui sont qualifiées de typiques, méridionales ou septentrionales. Une sous-région « typique » présente les caractéristiques générales de la région et la répartition des types écologiques montre l'équilibre de la végétation potentielle et du climat sur les sites mésiques. Lorsqu'une région écologique ne compte qu'une sous-région, elle est qualifiée de typique. Une sous-région est qualifiée de « méridionale » lorsqu'elle comporte des caractères bioclimatiques de transition entre le domaine auquel elle appartient et un domaine bioclimatique plus méridional. Une sous-région « septentrionale » possède aussi un caractère de transition mais avec un domaine bioclimatique au climat plus froid. Elle correspond généralement à des unités de paysage régional dont l'altitude est plus élevée que la moyenne générale ou, parfois, à des secteurs où les conditions physiques, notamment le relief et les dépôts, sont moins favorables à la croissance.

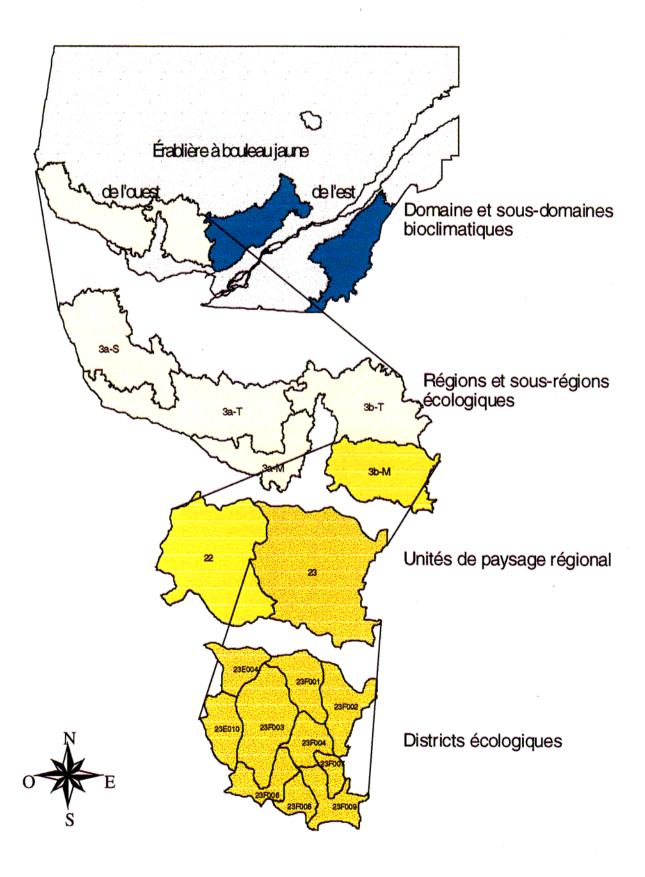
Dans le territoire actuellement cartographié du Québec méridional, on compte 37 régions écologiques qui regroupent 57 sous-régions. Le tableau 2.2 présente la liste des régions et sous-régions écologiques de chaque domaine.

2.1.4. Unités de paysage régional et districts écologiques

Les niveaux hiérarchiques subséquents à la sous-région écologique sont l'unité de paysage régional et le district écologique (figure 2.2). L'unité de paysage régional est une portion de territoire caractérisée par une organisation récurrente des principaux facteurs permanents du milieu et de la végétation. Les principaux facteurs écologiques considérés à ce niveau hiérarchique sont le type de relief, l'altitude moyenne, la nature et l'importance des principaux dépôts de surface, l'hydrographie ainsi que la nature et la distribution des types écologiques et la répartition de certaines essences à caractère indicateur du climat. Les facteurs physiques et de végétation sont utilisés de façon intégrée sans donner à l'un ou à l'autre une prépondérance choisie à l'avance.

Le district écologique est une portion de territoire caractérisée par un pattern propre du relief, de la géologie, de la géomorphologie et de la végétation régionale. Leur délimitation repose sur l'analyse de l'arrangement spatial des formes de relief, des dépôts de surface et sur la géologie du socle rocheux. La végétation est conditionnée par les facteurs précédents et par le climat que l'on considère homogène à l'échelle du district écologique.

2.1.5. Étage de végétation


Le niveau hiérarchique de **l'étage de végétation** sert à distinguer, au sein d'une région écologique donnée, les endroits où une forte variation de l'altitude entraîne un changement de la végétation par rapport à la végétation typique de la région, définissant ainsi un étage montagnard ou alpin. En pratique, on ne signalera que les cas où l'étage présent au sommet d'un mont diffère de deux domaines bioclimatiques ou plus par rapport à la région considérée.

2.1.6. Types écologiques et types forestiers

Les deux niveaux inférieurs du système hiérarchique, le type écologique et le type forestier s'expriment à une échelle locale. Un des objets principaux des rapports de classification écologique est de définir les types écologiques et les types forestiers du sous-domaine bioclimatique sur lequel ils portent.

Le type écologique est une portion de territoire à l'échelle locale présentant une combinaison permanente de la végétation potentielle et des caractéristiques physiques de la station. C'est une unité synthèse de classification qui exprime à la fois les caractéristiques physiques du milieu et les caractéristiques dynamiques et structurales de la végétation.

Figure 2.2 : Classification hiérarchique du domaine bioclimatique jusqu'aux districts écologiques de l'érablière à bouleau jaune de l'ouest

Le type forestier est une unité de classification qui décrit la végétation actuelle au moyen des essences forestières dominantes et des espèces indicatrices du sous-bois. Ces dernières sont le reflet des conditions locales, du régime nutritif ou du statut dynamique du type forestier. Les types forestiers permettent de déterminer les étapes de succession végétale de chacun des types écologiques.

Des clés d'identification aident à reconnaître les types écologiques et les types forestiers sur le terrain. L'agencement des types écologiques dans le paysage est aussi illustré au moyen d'une sère physiographique pour chaque sous-région écologique.

2.2. Échantillonnage

Depuis 1986, 26 000 points d'observation écologique ont été inventoriés dans le Québec méridional. L'inventaire écologique est presque terminé, il doit être complété au cours des prochaines années par des travaux dans l'extrémité est du domaine de la pessière à mousses de l'est.

Un point d'observation écologique comporte des observations détaillées sur la topographie, le sol, le dépôt, la composition de toutes les espèces arborescentes et des espèces du sous-bois (arbustes, herbacées, mousses et lichens). La prise de données et la codification sont conformes à la norme Le Point d'observation écologique (MRN, 1994). La codification présentée dans cette norme est utilisée dans les rapports de classification écologique.

Les points d'observation écologique sont distribués tout au long de virées d'inventaire écologique. Cinq à six points d'observation forment une virée de 1,0 à 1,5 kilomètre de longueur. Chaque district écologique d'une superficie moyenne de 150 kilomètres carrés comporte au moins une virée. Chaque virée placée sur une toposéquence vise à être représentative des conditions moyennes d'un district écologique.

La densité d'échantillonnage varie en fonction de la diversité écologique. Dans la sous-zone de forêt feuillue, il y a un point d'observation par 15 kilomètres carrés; dans la sous-zone de forêt mélangée, il y a un point d'observation par 20 kilomètres carrés et dans le sud de la forêt boréale ou le domaine de la sapinière à bouleau blanc, il y a un point d'observation par 25 kilomètres carrés. Dans l'immense domaine de la pessière à mousses, la densité d'échantillonnage varie d'un point d'observation par 30 à 50 kilomètres carrés.

L'échantillonnage est dirigé vers tous les types de peuplements qu'ils soient jeunes, en développement, mûrs et surannés. Des inventaires sont, bien sûr, réalisés dans des forêts non perturbées par la coupe et dans des forêts découlant de perturbations naturelles et anthropiques. De plus, une faible proportion des points d'observation a été réalisée dans des sites issus de perturbations récentes (e.g. feux, coupes, chablis).

2.3. Méthode de classification

La figure 2.3 montre la séquence des opérations franchies au cours du processus de classification. Par ailleurs, le texte qui suit présente la définition, les objectifs ainsi que la méthodologie qui sont rattachés à chacun des niveaux de perception.

2.3.1. Types de milieux physiques

Définition

• Le type de milieu physique est l'unité de classification qui synthétise l'ensemble des variables physiques du milieu.

Objectifs

 Synthétiser les variables physiques du milieu (topographie, drainage, texture, pierrosité, pente, etc.), qui expliquent le mieux la répartition de la végétation.

Méthode

- Analyser, par région écologique, la répartition des classes texturales par types de dépôts afin de regrouper ces derniers en grandes classes texturales (fin, moyen, grossier) et en grandes catégories d'épaisseur (mince, épais).
- Étudier, par région écologique, la répartition de la pierrosité par types de dépôts afin de regrouper ces derniers en grandes classes de pierrosité (faible et élevé).
- Regrouper les classes de drainage en un nombre restreint de catégories (xérique, mésique, subhydrique, hydrique).
- Former les types de milieux physiques en juxtaposant les données portant sur la texture, l'épaisseur, la pierrosité et les drainages.
- Présenter les types de milieux physiques sous forme de grilles.
- Identifier et décrire les principaux types de milieux physiques.

2.3.2. Groupes d'espèces indicatrices Définition

• Le groupe d'espèces indicatrices est l'unité de classification qui sert à décrire le sous-bois. Il est formé d'un assemblage de groupes écologiques élémentaires qui renseignent sur la qualité d'un lieu donné ainsi que sur les perturbations ou l'évolution de la végétation.

Cartographie des dépôts de surface (1/50 000) Inventaire écologique Districts écologiques (description et cartographie au 1/50 000 Groupes d'espèces indicatrices au 1/250 000) Types de milieux physique Types forestiers Complexes Végétations potentielles pédologiques Unités de paysage régional Types écologiques Régions écologiques Sères physiographiques (3ème version) Domaines bioclimatiques Étapes de la classification de la végétation Autres activités du programme de conais-Zones de végétation sance des écosystèmes forestiers

Figure 2.3 : Étapes et produits de la classification de la végétation du MRNQ

Objectifs

- Former des groupes d'espèces de mêmes affinités écologiques. Ces groupes d'espèces sont nommés « groupes écologiques élémentaires ».
- Décrire la structure (arbustaie, herbaçaie, muscinaie) et la composition de la végétation du sous-bois. Un groupe d'espèces indicatrices est formé d'un à trois « groupes écologiques élémentaires » qui s'observent simultanément sur un même site.

Méthode

- Analyser le comportement des espèces végétales une à une en fonction de certaines variables écologiques (autécologie). On considère les variables du milieu physique, les stades évolutifs, la composition de la végétation ainsi que les perturbations.
- Former des groupes écologiques élémentaires en comparant les espèces entre elles, à l'aide d'un indice fréquence-abondance. L'espèce la plus représentative du groupe élémentaire lui sert d'étiquette. Les espèces arborescentes ne sont pas considérées dans ces groupes puisqu'elles sont exprimées par le premier membre du type forestier. Leur signification écologique est toutefois conservée.
- Former des groupes d'espèces indicatrices exprimant les mêmes conditions de sous-bois. Cette opération est effectuée par l'assemblage de groupes écologiques élémentaires qui atteignent un seuil optimal de recouvrement. Le nombre de groupes élémentaires d'espèces indicatrices varie de un à trois selon les conditions écologiques observées.
- Préparer une clé d'identification-terrain des groupes d'espèces indicatrices.

2.3.3. Types forestiers

Définition

• Le type forestier est l'unité de classification qui définit à la fois la végétation actuelle et le sous-bois.

Objectif

• Décrire la composition de la végétation actuelle au moyen des principales espèces arborescentes (qui peuvent dépasser 4 m de hauteur) et des groupes d'espèces indicatrices.

Méthode

- Décrire le couvert actuel au moyen des espèces arborescentes les plus abondantes. Selon l'importance de ces espèces dans le couvert, on retiendra de une à trois espèces arborescentes.
- Décrire le sous-bois au moyen du groupe d'espèces indicatrices.
- L'assemblage du couvert actuel et du groupe d'espèces indicatrices forme le type forestier.

2.3.4. Végétations potentielles

Définition

• La végétation potentielle est l'unité de classification qui synthétise les caractéristiques dynamiques de la végétation d'un lieu donné.

Objectif

 Prédire la végétation de fin de succession en fonction des groupes d'espèces indicatrices, de la végétation actuelle, de la régénération et des variables physiques du milieu.

Méthode

- Identifier les espèces arborescentes de fin de succession.
- Analyser les relations entre les groupes d'espèces indicatrices et les grands types de couverts de fin de succession de façon à dégager les liens entre ces groupes d'espèces indicatrices et les végétations potentielles.
- Classifier les peuplements de fin de succession en végétation potentielle selon la composition en espèces arborescentes et les groupes d'espèces indicatrices lorsqu'ils expriment des différences importantes dans les caractéristiques physiques du milieu.
- Classifier les peuplements appartenant aux autres stades évolutifs en appliquant les subdivisions établies à l'aide des peuplements de fin de succession.
- Élaborer une clé d'identification de la végétation potentielle en utilisant d'abord les groupes d'espèces indicatrices puis la composition arborescente (toutes strates confondues) et, si nécessaire, les variables physiques du milieu. Dans certains cas (végétations potentielles peu fréquentes), on privilégiera la composition arborescente.

2.3.5. Types écologiques

Définition

• Le type écologique est une unité synthèse de classification qui exprime à la fois les caractéristiques physiques du milieu et les caractéristiques écologiques de la végétation (composition, structure et dynamisme). Le type écologique décrit un lieu donné au moyen d'une combinaison du type de milieu physique et de la végétation potentielle.

Objectif

• Décrire la combinaison des caractéristiques dynamiques de la végétation et les caractéristiques physiques d'un site donné.

Méthode

- Utiliser les clés élaborées dans les sections précédentes afin d'identifier les types de milieux physiques et la végétation potentielle.
- Assembler les deux unités identifiées afin de former le type écologique.
 Le type écologique est dénommé par la végétation potentielle suivie d'un code exprimant les caractéristiques physiques du milieu et parfois d'un second exprimant des conditions particulières du site.

2.3.6. Complexes pédologiques

Définition

• complexe pédologique : ensemble des conditions pédologiques auxquelles est associée une même fréquence relative des groupes d'espèces indicatrices utilisés comme indicateurs de fertilité.

Objectif

- Intégrer les variables pédologiques à la classification écologique et attribuer une étiquette de fertilité aux regroupements de variables pédologiques réalisés;
- Associer un ou des types de sol, selon la classification canadienne des sols, aux profils observés sur le terrain et exprimer les principales conditions pédologiques du territoire.

Méthode

- Classer les profils de sols en fonction du référentiel pédologique²;
- Regrouper les groupes d'espèces indicatrices en fonction de la richesse relative établie lors de l'analyse du comportement des espèces végétales;
- Établir l'histogramme de fréquence des groupes d'espèces indicatrices (groupes d'espèces indicatrices retenus) pour toutes les combinaisons dépôt-drainage-acidité (conditions pédologiques) obtenues lors du classement des profils à l'aide du référentiel;
- Regrouper les conditions pédologiques ayant la même fréquence relative des groupes d'espèces indicatrices retenus;
- Distribuer les divers regroupements obtenus sur une échelle de fertilité allant d'une fertilité très faible à une fertilité élevée;
- Décrire les complexes pédologiques;

2.3.7. Sères physiographiques

Définition

• Représentation schématique de la répartition des types écologiques dans le paysage.

Objectif

 Généraliser, à l'aide d'un profil schématique de la topographie, les principales relations entre les végétations potentielles et les variables physiques du milieu. Cette schématisation permet d'illustrer la diversité et la répartition des types écologiques dans le paysage. La sère physiographique sert d'outil au photo-interprète lors de la production des cartes écoforestières.

Méthode

 Analyser la répartition géographique et topographique des types écologiques et identifier les types écologiques occupant une portion de paysage donnée.

Référentiel pédologique : système de classification développé par l'équipe de classification écologique du MRN qui permet d'associer les caractéristiques pédologiques de terrains à un ou des types de sol de la classification canadienne des sols.

- Rechercher et identifier les variables physiques (altitude, exposition, situation topographique, etc.) qui expliquent le mieux la répartition des types écologiques. On s'appuie alors sur la base de données de l'inventaire écologique, la topographie du terrain le long des virées d'inventaire écologique, les observations de terrain et, au besoin, les photographies aériennes.
- Illustrer la nature, la composition et la répartition des types écologiques dans le paysage. Les sères sont produites par sous-région écologique en prenant soin de préciser la représentativité des types écologiques par unité de paysage régional. La distribution de la végétation en fonction du gradient altitudinal peut justifier l'élaboration de sères par étage de végétation. L'unité minimale d'expression est le district écologique.

•				
		•		

3. PRÉSENTATION DU TERRITOIRE

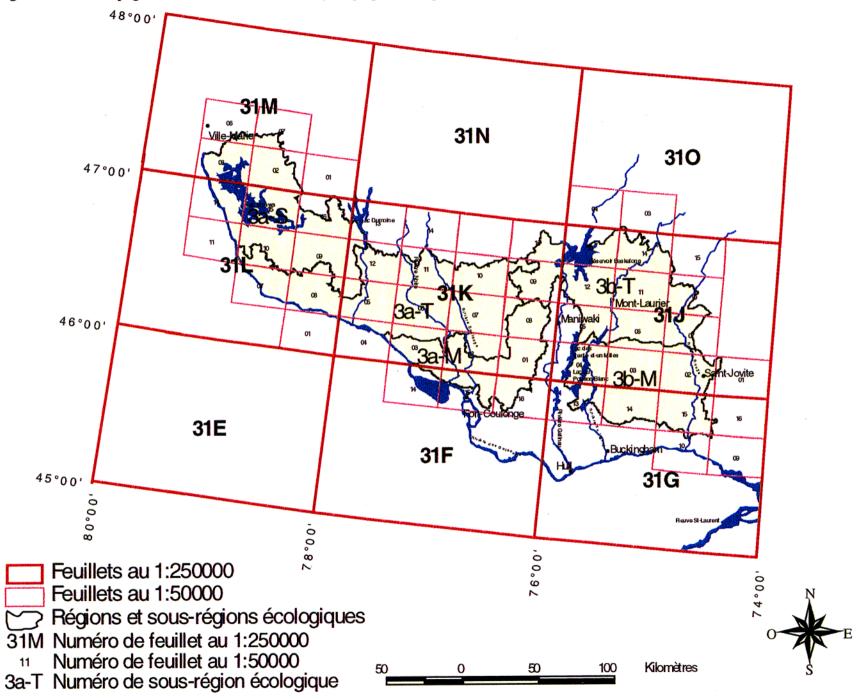
3.1. Localisation géographique

Le sous-domaine de l'érablière à bouleau jaune de l'ouest représente un territoire d'une superficie totale d'environ 31 324 km² concentré dans le sud-ouest de la province (figure 3.1); plus précisément, ce territoire est borné au sud-ouest par la rivière Outaouais, au nord par le 47° parallèle et à l'est par la région des Laurentides. Dans sa portion centre sud, le territoire est découpé par une incursion du sous-domaine de l'érablière à tilleul de l'ouest qui s'étend dans toute la vallée de la rivière Gatineau.

Pour tenir compte de la composition des forêts sur les sites typiques (conditions moyennes) et de la dynamique de ces mêmes forêts, le territoire du sous-domaine a été divisé en deux régions écologiques : 3a – Collines de l'Outaouais et du Témiscamingue et 3b – Collines du lac Nominingue (figure 3.2).

3.2. Caractéristique climatique régionale

Le territoire bénéficie d'une température annuelle moyenne variant entre 2,5° C au nord et en altitude et 5° C au sud (tableau 3.1). Le nombre de degrés-jours de croissance oscille entre 2 400 et 3 000 unités et la durée de la saison de croissance annuelle varie de 170 à 180 jours. Les précipitations totales annuelles se situent en moyenne entre 800 et 1 100 mm. Un pourcentage important de ces précipitations (25 %) tombe sous forme de neige.


Il n'y a pas de différence importante entre les deux régions écologiques en ce qui a trait au climat, si ce n'est que celui de la région 3a semble un peu moins doux, en particulier, au nord et au centre du territoire. Le long de la rivière Outaouais, les précipitations sont un peu moins élevées et la température légèrement plus chaude.

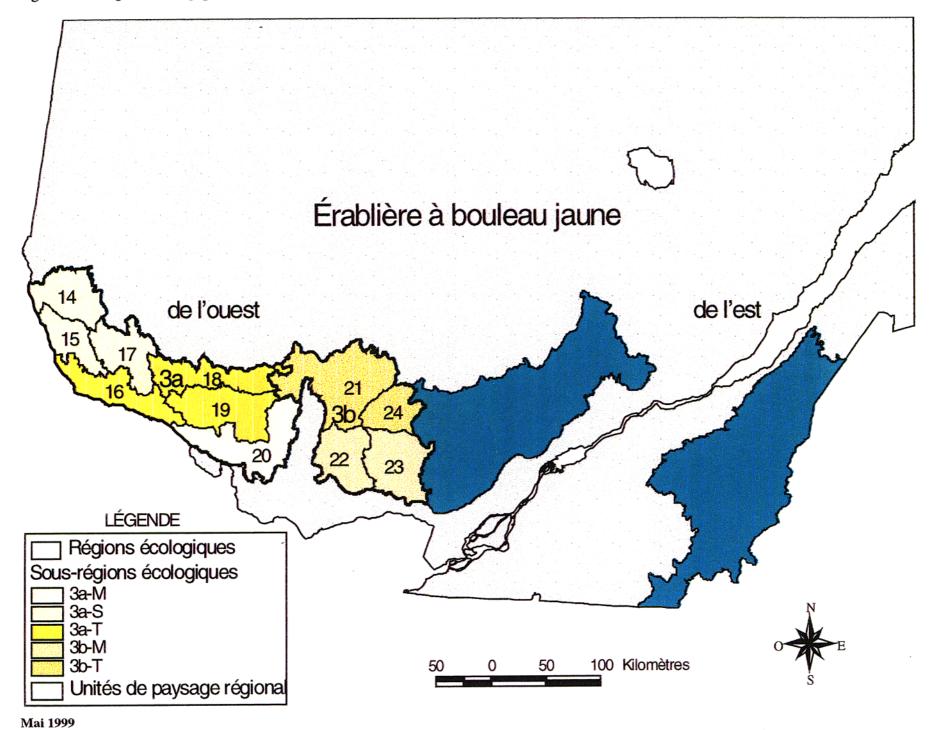

À l'intérieur de la région 3b, on observe également des variations mineures entre le climat sur le sud et celui sur le nord du territoire. Le nombre de jours de croissance est un peu plus élevé dans la partie sud du territoire.

Tableau 3.1 : Caractéristiques climatiques et géologie du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Variables climatiques	Région écologique 3a	Région écologique 3b
Température moyenne annuelle (°C)	2,5-5,0°C	2,5 à 5,0°C
Longueur de la saison de croissance (jours)	170-180	170-180
Moyenne annuelle des précipitations totales (mm)	800-1 000	900- 1 100
% de couvert nival	25 %	25 %

Figure 3.1 : Découpage des feuillets au 1\50 000, hydrographie et toponymie du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

3.3. Géologie, hydrologie, physiographie et dépôts de surface

La géologie du territoire de l'érablière à bouleau jaune de l'ouest est plutôt homogène. Le substratum rocheux est le plus souvent d'origine cristalline et composé de roches métamorphiques. Dans la région 3a, on trouve également des roches sédimentaires dans le nord-ouest et dans le sud-est de la région.

Le réseau hydrographique est beaucoup plus développé dans la partie nord-ouest du sous-domaine où on observe une multitude de lacs. La plupart des rivières importantes coule du nord vers le sud en direction de la rivière des Outaouais.

En général, le relief n'est pas très accidenté et il est surtout dominé par des collines (58 %) (figure 3.3). On y trouve également une certaine proportion de relief de coteaux (12 %) et de hautes-collines (21 %), ces dernières étant majoritairement concentrées dans le sud-est du territoire (région 3b). L'altitude moyenne est d'environ 300 m, tandis que l'amplitude moyenne tourne autour de 80 m (tableau 3.2 et figure 3.4).

Le sous-domaine de l'érablière à bouleau jaune de l'ouest est dominé par des dépôts de till dont l'épaisseur varie en fonction du type de relief dominant (figures 3.5 et 3.6). En général, le till mince se rencontre sur les sommets et les pentes fortes, tandis que le till épais couvre les versants en pente douce et le fond des dépressions. Dans les vallées les plus larges, on trouve des dépôts fluvioglaciaires. Finalement, dans l'ouest du territoire, on rencontre des tourbières qui comblent les dépressions mal drainées.

La région 3a (tableau 3.3) est caractérisée par son relief de collines aux versants en pente généralement faible. Pour exprimer les variations en altitude qui influencent la distribution des végétations potentielles, le territoire de la région a été subdivisé en trois sous-régions écologiques: la sous-région 3a-T est typique du sous-domaine; la sous-région 3a-S est septentrionale et la végétation qu'on y trouve se rapproche de celle du sous-domaine adjacent plus au nord, la sapinière à bouleau jaune. Finalement, la sous-région 3a-M est méridionale et supporte une végétation qui est plus semblable à celle du sous-domaine voisin plus au sud, l'érablière à tilleul.

La sous-région typique 3a-T couvre 8 710 km² soit environ 46 % du territoire de la région et est située au centre de celle-ci. Son territoire regroupe trois unités de paysage régional (16, 18, 19) et est caractérisé par un relief de collines (70 %) et de hautes-collines (22 %). Le territoire de l'unité 16, situé à l'ouest, se distingue par son relief plus accidenté et les nombreux affleurements rocheux qui y sont associés; le till épais y est beaucoup plus rare.

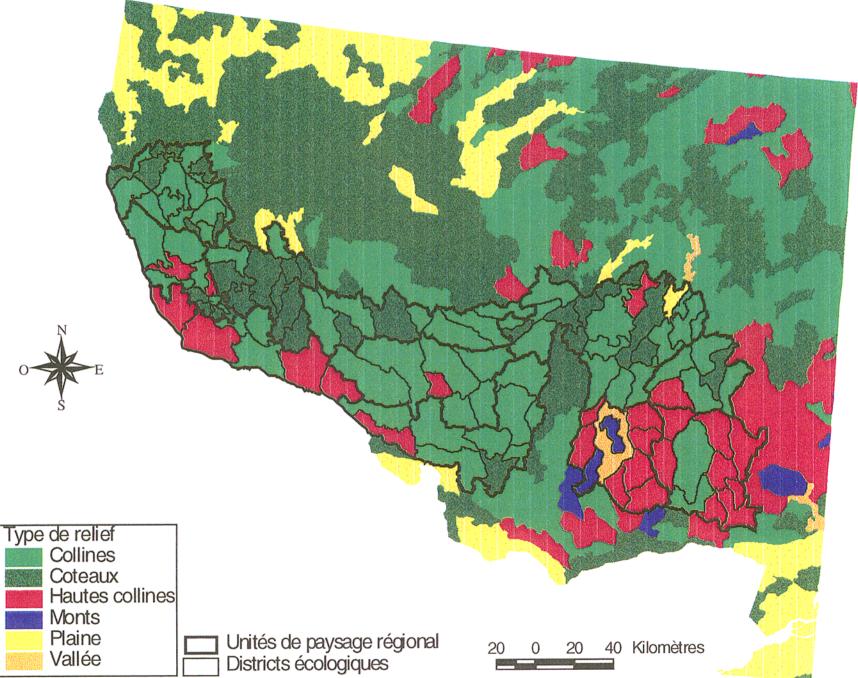

26 Mai 1999

Tableau 3.2 : Caractéristiques physiographiques et dépôts de surface des régions écologiques du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest *

Région écologique			3a			3b
Sous-région écologiqu	ne	3a-M	3a-T	3a-S	3b-M	3b-T
Superficie (km²)	····	3 596	8 710	6 626	5 504	6 888
Altitude moyenne (m)	et amplitude (m)	263	329	323	290	292
Types de relief domina	ant	Collines	Collines	Collines-Coteaux	Hautes-Collines	Collines
Nombre de districts éc	cologiques	10	22	42	19	29
Superficie (km²) et no	mbre de districts par type de r	elief (n) (Selon la base de données	des districts écologiques du MRN	Q)		
- Plaines						153 (1)
- Vallée					508 (1)	
- Coteaux		274 (1)	731 (2)	2 825 (19)		1 708 (9)
- Collines		3 039 (8)	6 095 (15)	3 544 (21)	961 (2)	4 516 (17)
- Hautes-collines		283 (1)	1 884 (5)	257 (2)	3 697 (15)	511 (2)
- Monts					338 (2)	
Importance relative (%	b) des types de dépôts de surf	ace (Selon la base de données des	districts écologiques du MRNQ)	· · · · · · · · · · · · · · · · · · ·		
kee (k, sin, Min, i	471, 71M)				10	, k
Dépôts	IA, IAD	10	14	23	11	23
glaciaires	IAR, IAY, IAM	28	47	36	43	34
	1BF, 1BP, 1BI, 1P	-	< 0,5	0,5	< 0,5	< 0,5
Dépôts	2A, 2AE, 2AK, 2AT	1	< 0,5	1	3	5
fluvioglaciaires	2B, 2BE, 2BD	13	9	4	13	9
et fluviatiles	3AE, 3AN	2	1	< 0,5	1	ı
Dépôts lacustres	4GA, 5A	< 0,5	< 0,5	1	1	3
ou marins	4GS, 5S, 6S, 9	< 0,5	< 0,5	2	I	3
Dépôts organiques	7T, 7E	2	3	6	1	2
Eau	-	8	8	17	9	10
Urbain						

^{*} Selon Saucier et Robitaille (1995)

Figure 3.3 : Unités de paysage régional, districts écologiques et type de relief du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

28 Mai 1999

Figure 3.4 : Unités de paysage régional, districts écologiques et altitude moyenne du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

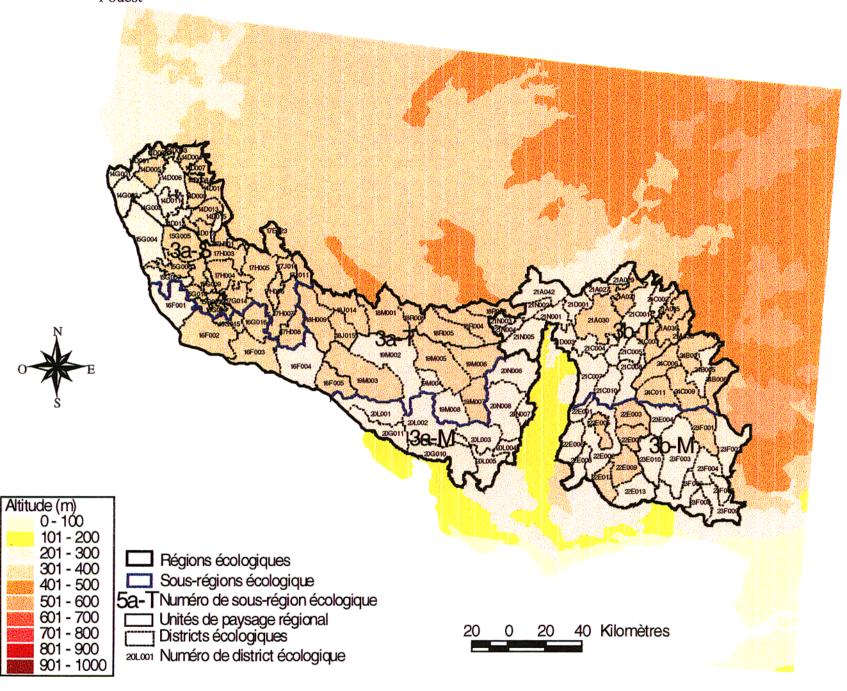


Figure 3.5 : Unités de paysage régional, districts écologiques et dépôt dominant du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Figure 3.6 : Unités de paysage régional, districts écologiques et dépôt sous-dominant du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

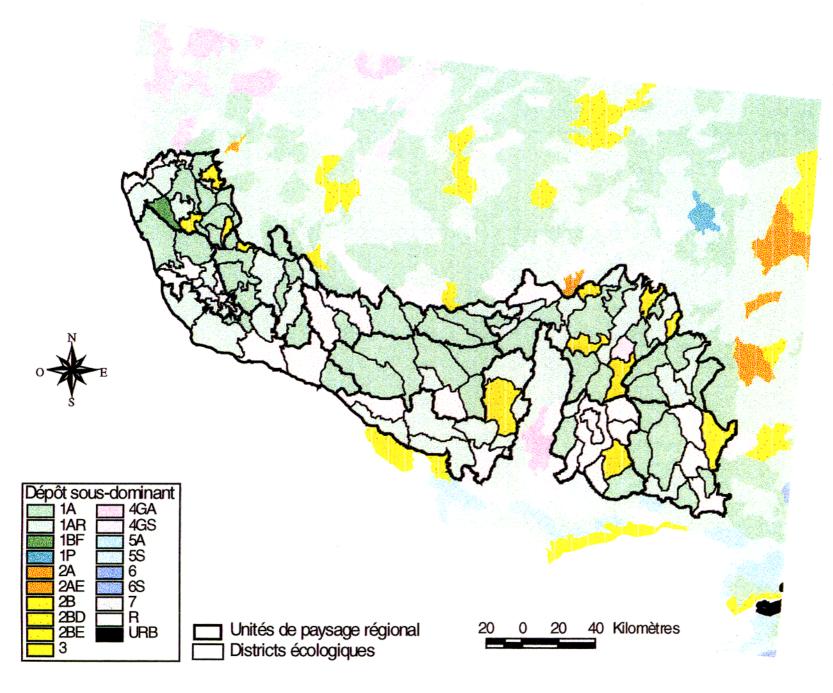


Tableau 3.3 : Caractéristiques physiographiques et dépôts de surface des unités de paysage régional de la région écologique 3a du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest*

Région écologique					3a			
Sous-région écologique		3a-M	3a-T			3a-S		
Jnite de paysage régior	nal	20 - Lac Dumont	16 - Lac Memewin	18 - Lac Nilgaut	19 - Lac Lynch	14 - Lac Ostabo- ningue	15- Témiscaming	17 - Lac du Pin Blanc
Superficie (km²)		3 596	2 529	2 782	3 399	2 492	1 739	2 395
Altitude moyenne (m) e	t amplitude (m)	264 (101)	327 (121)	352 (86)	304 (83)	303 (52)	311 (73)	347 (53)
Γypes de relief dominar	nt	Collines	Hautes-Collines	Collines	Collines	Collines	Collines	Coteaux
Nombre de districts éco	logiques	10	7	8	7	20	10	12
Superficie (km²) et nom	bre de districts par type de re	lief (n)						···
- Plaines								
- Vallée								1
- Coteaux		274 (1)		731 (2)		667 (7)	248 (3)	1 910 (9)
- Collines		3 039 (8)	795 (3)	2 051 (6)	3 249 (6)	1 825 (13)	1 234 (5)	485 (3)
- Hautes-collines		283 (1)	1 734 (4)		150 (1)		257 (2)	
- Monts								
Importance relative (%) des types de dépôts de surfa	ace						
Roc (R, R1A, M1A, M	7T, 7TM)	36	29	14	8	14	8	5
Dépôts	1A, 1AD, 1AB	10	7	20	16	17	20	30
glaciaires	IAR, IAY, IAM	29	41	45	53	39	39	32
	IBF, IBP		< 0,5			1	< 0,5	< 0,5
Dépôts	2A, 2AE, 2AK, 2AT	1	< 0,5	1	< 0,5	1	2	1
fluvioglaciaires	2B, 2BE	13	7	9	10	4	4	5
et fluviatiles	3AE, 3AN	ı	0,5	1	2		0,5	< 0,5
Dépôts lacustres	4GA	< 0,5	1			1	I	< 0,5
ou marins	4GS, 5S, 6S, 9	< 0,5	< 0,5			1	2	3
Dépôts organiques	7T, 7E	2	5	3	2	3	6	9
Eau		8	8	7	8	20	18	14

^{*} Selon Robitaille et Saucier (1998)

Les unités 18 et 19 ont un relief de collines aux versants en pente douce et modérée où l'amplitude et l'altitude sont plutôt faibles. Le till mince couvre près de la moitié de la superficie. Quelques épandages fluvioglaciaires sont présents dans les vallées les plus larges et aux abords des principaux plans d'eau. Le réseau hydrographique est moins développé que dans la sous-région septentrionale 3a-S à l'ouest de la région, mais un certain nombre de lacs importants y sont recensés. De plus, les rivières Coulonge et Dumoine traversent le territoire en direction nord-sud pour s'écouler dans la rivière des Outaouais.

La sous-région septentrionale 3a-S est située au nord-ouest du sous-domaine et se divise en trois unités de paysage régional (14, 15, 17) couvrant 6 626 km2. Le relief est en général peu accidenté et formé de collines (53 %) et de coteaux (43 %) aux versants en pente douce et modérée. Les dépôts de till mince se trouvent en plus grande proportion sur le territoire (36 %) et sont localisés un peu partout sans égard au relief, sauf dans l'unité 17 où on les rencontre surtout sur les sommets. Le till épais est moins fréquent (23 %) et lui aussi se rencontre autant sur les reliefs doux que sur ceux plus accidentés. Dans l'unité 17, le till épais est surtout localisé sur les pentes douces. Les affleurements rocheux sont plus fréquents dans l'unité de l'ouest (14) et se rencontrent sur le sommet des collines. Sur les dépressions mal drainées, on trouve un grand nombre de petites tourbières. Finalement, dans les vallées les plus larges et autour des plans d'eau, on trouve des épandages fluvioglaciaires.

Le réseau hydrographique est très développé et formé d'un grand nombre de lacs aux formes échancrées. Les cours d'eau sont orientés vers le sud en direction de la rivière des Outaouais.

Finalement, la sous-région méridionale 3a-M ne contient qu'une seule unité de paysage régional (20 %), située au sud-est de la région et couvrant une superficie de 3 596 km2. Son relief est formé presque exclusivement de collines (85 %) aux sommets arrondis où les pentes sont de faibles à modérées. L'altitude moyenne est la moins élevée de toutes les unités de la région, mais on trouve tout de même des escarpements rocheux et de petites vallées encaissées surtout au sud le long de la limite avec la plaine de l'Outaouais. Les affleurements rocheux sont très importants (36 %) et couvrent les sommets et les pentes modérées et fortes. Les dépôts de till mince sont également fréquents et couvrent les versants en pente douce; tandis que le till épais, plus rare, est localisé au fond des dépressions étroites. De vastes épandages fluvioglaciaires occupent les terrains plats de l'est de l'unité.

Le réseau hydrographique n'est pas très important et formé de quelques lacs, dont les principaux sont les lacs McGillivrey et Dumont. La rivière Coulonge qui coule vers le sud traverse le centre du territoire.

Mai 1999 33

La région 3b (tableau 3.4) représente 40 % du territoire du sous-domaine et se distingue par un relief de collines (44 %) et de hautes-collines (34 %) un peu plus accidenté que la moyenne du sous-domaine. Le territoire se divise en deux sous-régions écologiques sur la base des différences latitudinales. La sous-région typique 3b-T est située plus au nord et couvre une superficie de 6888 km2 soit près de 56 % du territoire de la région. La végétation de l'érablière à bouleau jaune est la plus fréquente dans des conditions de pente, d'épaisseur de dépôt, de drainage et d'exposition moyenne. La sous-région méridionale 3b-M est un peu moins importante en superficie (5 504 km2). Sur les sites mésiques, on y rencontre la végétation de l'érablière à tilleul comme celle du territoire adjacent situé sur les plaines des rivières Gatineau et des Outaouais.

La sous-région 3b-T occupe un territoire situé au nord-est du sous-domaine et regroupe deux unités de paysage régional (21, 24). Le relief varie d'une unité à l'autre. Dans celle de l'ouest (24), il est peu accidenté et formé surtout de collines (65 %) et de coteaux (28 %) aux versants en pente douce et aux sommets très arrondis. Dans l'unité 21, qui est beaucoup moins importante en superficie (25 %), le relief est plus accidenté et formé de collines aux versants en pente modérée. Les dépôts de till couvrent plus de la moitié des superficies. Le till mince se rencontre sur la plupart des sommets et sur les versants des coteaux et des collines. Le till épais, plus important dans l'unité 24, est surtout localisé dans les dépressions et les terrains en pente très faible. Les affleurements rocheux sont très fréquents dans l'unité 21, tandis que dans l'unité 24, on les rencontre seulement sur les plus hauts sommets. Dans les vallées les plus larges de l'unité 24, on rencontre surtout des dépôts fluvioglaciaires et glaciolacustres sableux. Dans l'unité 21, des dépôts glaciolacustres, sableux ou argileux occupent la vallée de la rivière du Lièvre.

Le réseau hydrographique est plus important dans l'unité 21, à cause de la présence du réservoir Baskatong et de la rivière du Lièvre. Dans l'unité 24, on trouve une multitude de petits lacs parsemés sur le territoire en plus du bassin de la rivière Rouge qui est orientée vers le sud en direction de la rivière des Outaouais.

Le territoire de la sous-région 3b-M est situé au sud-est du sous-domaine et regroupe deux unités de paysage régional (22, 23), sensiblement de la même superficie. Le relief est accidenté et formé de collines (17 %) et de hautes-collines (67 %) aux versants en pente généralement modérée et parfois forte. Le paysage de l'unité le plus à l'ouest (22) est parsemé d'escarpements rocheux et on rencontre quelques larges vallées dont la principale est celle de la rivière du Lièvre. L'altitude moyenne (300 m) est plus élevée dans l'unité 22 où les sommets atteignent quelque 450 m. Dans l'unité 23, les plus hauts sommets atteignent 350 m et l'altitude moyenne est 275 m. Dans les deux unités, l'amplitude moyenne tourne autour de 120 m.

Tableau 3.4 : Caractéristiques physiographiques et dépôts de surface des unités de paysage régional de la région écologique 3b du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest*

Région écologique				3b	
Sous-région écologiq	ue		3b-M		3b-T
Unite de paysage rég	ional	22 - Lac du Poisson Blanc	23 - Lac Simon	21 - Mont-Laurier	24 - Lac Nominingue
Superficie (km²)		2 444	3 060	5 174	1 714
Altitude moyenne (m) et amplitude (m)	300 (126)	275 (120)	288 (90)	331 (102)
Types de relief domi	nant	Hautes-collines	Hautes-collines	Collines	Collines
Nombre de districts é	cologiques	10	10	23	6
Superficie (km²) et no	ombre de districts par typ	e de relief (n)			
- Plaines				153 (1)	
- Vallées		508 (1)			
- Coteaux				1 472 (8)	236 (1)
- Collines			961 (2)	3 342 (13)	1 174 (4)
- Hautes-collines		1 598 (7)	2 099 (8)	207 (1)	304 (1)
- Monts		338 (2)			
Importance relative (%) des types de dépôts d	e surface		<u>.</u>	
Roc (R, R1A, M1A,	M7T, 7TM)	20	13	12	6
Dépôts	1A, 1AD, 1AB	10	13	20	32
glaciaires	1AR, 1AY, 1AM	44	43	32	39
	1BF, 1BP, 1P	< 0,5	< 0,5	< 0,5	< 0,5
Dépôts	2A, 2AE, 2AK, 2AT	2	3	6	2
fluvioglaciaires	2B, 2BE	13	14	9	8
et fluviatiles	3AE, 3AN	< 0,5	1	1	1
Dépôts lacustres	4GA, 5A	< 0,5	1	3	
ou marins	4GS, 5S, 9	0,5	i	3	3
Dépôts organiques	7T, 7E	ı	< 0,5	2	1
Eau		9	9	11	8

^{*} Selon Robitaille et Saucier (1998)

Les dépôts de till mince occupent près de la moitié de la superficie de la sous-région. Dans l'unité 23, ils couvrent la plupart des versants et des sommets, tandis que dans l'unité 22, le till mince couvre surtout les versants des hautes-collines et des monts pendant que le roc affleure sur la plupart des sommets. Dans toute la sous-région, le till épais est rare et présent seulement au fond des étroites vallées. Sur le territoire de l'unité 23, plus à l'est, la moraine frontale de Saint-Narcisse traverse l'unité d'est en ouest dans la partie nord du territoire et on en rencontre parfois des sections importantes. Toujours dans l'unité 22, on remarque des épandages de matériel fluvioglaciaires dans la région au sud du lac Simon et dans la région de Saint-Jovite, dans les bassins des rivières Rouge et du Diable. Dans l'unité 23, les épandages fluvioglaciaires occupent les principales vallées dont celle de la rivière du Lièvre.

Le réseau hydrographique est orienté nord-sud et s'écoule dans la rivière des Outaouais. Dans l'unité de l'ouest (23), le lac du Poisson Blanc situé dans le secteur ouest du territoire, est le plus important. Dans ce même secteur, on trouve également beaucoup de petits lacs perchés entre les hautes-collines et les monts. L'unité 22 est parsemée de cours d'eau dont la principale est la rivière du Lièvre. Le réseau hydrographique de l'unité 23 comprend quelques grands lacs dont les lacs Simon, Gagnon et Tremblant. Dans la partie nord de l'unité, on observe un grand nombre de petits lacs. La rivière Rouge qui coule vers le sud en direction de la rivière des Outaouais, est le principal cours d'eau de l'unité.

3.4. Végétation régionale

Le territoire du sous-domaine de l'érablière à bouleau jaune de l'ouest est clairement à vocation forestière et on ne trouve des activités agricoles d'importance (0 à 5 % de territoire) que dans les unités de paysage de l'est du territoire (21, 22, 23, 24) et surtout concentrées le long des rivières importantes.

La forêt productrice (forêt pouvant contenir au moins 30 m³/ha à 120 ans) couvre près de 82 % de territoire. Le tableau 3.5 nous fournit des données sur la forêt de ce territoire, d'abord, en incluant les strates en régénération et ensuite en fournissant un portrait des strates contenant des peuplements de plus de sept mètres et de densité supérieure à 25 %, en fonction de leur classe d'âge et des groupements d'essences qui les composent.

À l'échelle du sous-domaine, on constate que les forêts sont essentiellement composées de peuplements feuillus et de peuplements mélangés. Les peuplements feuillus sont majoritairement des érablières mais il y a aussi une certaine proportion de peuplements de feuillus intolérants. Les peuplements mélangés sont surtout composés de feuillus intolérants et de résineux et dans une moindre proportion de bouleaux jaunes ou d'érables à sucre et de résineux.

Tableau 3.5 : Description générale de la végétation régionale du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

			Sous-domai	ne				So	us-régio	ns écologiqu				
			Total			3a-M		3a-T		3a-S		3b-M		3b-T
erffele år	rtale (km²)		31492			3896		8561		6650		5439		6944
% ouport			100%			12,37%		27,18%		21,12%		17,27%		22,05%
eaue-do	meine.		- NO					20.000		19.92%		17.17%		21,62%
superficia fores	è vocation Hère		82,68%			12,68%		28,60%	<u> </u>	15,52 %	L		L	
							C	ouvert feuill	u			,		
strate	âas ⁽¹⁾	Superficie	% de la superficie	% de la super.	Superficie		Superficie	% de la super.	Superficie km²	% de la super. for, du sous-dom.	Superficie km²	% de la super. for, du sous-dom	Superficie km²	% de la super. for, du sous-don
Sti ate	age .	km²	totale	for, du sous-dom.	. km²	for, du sous-dom.	km²	for, du sous-dom.	Km	0.00	1	0,00	1	0,00
BJ	J	2	10,0	0,01	0	0,00	0	0	1	0.57	21	0.08	187	0.72
ω	М	592	1,88	2 <i>2</i> 7	31	0,12	205	0,79	148	0.00	107	0,41	47	0,18
ER	J	210	0,67	0,81	33	0,13	22 1127	4.33	213	0.82	1603	6,16	1282	4,92
CR	M	5065	16,08	19,45	841	3,23 0,01	2	0.01	0	0,00	17	0,07	18	0,07
ERBJ	J	41	0,13	0,16	177	0.68	668	2,57	515	1.98	299	1,15	675	2,59
	M	2333	7,41	8,96 0.17	13	0,05	2	0,01	0	0.00	17	0.07	12	0,05
ERFI	<u>J</u>	43 563	1,79	2.16	93	0.36	139	0,53	39	0,15	141	0,54	152	0,58
	М	5	0.02	0.02	 	0,00		00,00		0.00	4	0.02	1 16	0.00
ERO	J M	37	0,12	0,14	0	0.00	5	0,02	3	0,01	12	0,05	2	0,01
	J	10	0.03	0,04	4	0,02	0	0,00	0	0,00	46	0.18	46	0.18
FH	M	135	0,43	0,52	30	0,12	11	0,04	2 22	0.08	77	0.30	110	0,42
	J	421	1,34	1,62	84	0,32	127	0,49	881	3,38	243	0.93	460	1,77
FI	М	2432	7,72	9,34	267	1,03	583	0.00	- 	0.00	2	0,01	1	0,00
FT	J	20	0,06	0,08	16 147	0,06 0,56	22	0.08	1	0.00	31	0,12	29	0,11
	М	230	0,73	0,98	1739	6,68	2914	11,19	1824	7,00	2624	10,08	3039	11,67
To	otal	12139	38,55	46,62	1/39	0,00				<u> </u>	<u> </u>		,	
strate	áge ⁽¹⁾							ouvert mélai		0.00	T 9	0.03	22	0,08
0.10	J	42	0,13	0,16	3	0,01	6 730	0,02 2,80	781	3.00	277	1.06	597	2,29
BJR	М	2491	7,91	9,57	105	0,40	1 /30	0.00	+-'8'	0.00	6	0,02	0	0,00
FROR	J	6	0,02	0.02	0	000	19	0.07	وا	0,03	30	0,12	5	0,02
	M	64	0,20	0,25	1 4	0.02	1 3	0,01	0	0,00	4	0,02	4	0.02
ERR	\	15 642	0,05 2,04	2,47	108	0,41	310	1,19	49	0,19	131	0,50	45	0,17
	M	604	1,92	2,32	147	0,56	169	0,65	30	0,12	105	0,40	154	0,59 2,49
FIR	l J	4476	14,21	17,19	525	2,02	1576	6,05	1445	5,55	283	0.00	648	0.00
	 "	3	0,01	0.01	1	0.00	2	0,01	1	0,00	0 29	0.00	12	0.05
FTR	M	180	0,57	0,69	29	0,11	106	0,41	5	0,02	8	0.03	1 7	0.03
MFT	J	31	0,10	0,12	9	0,03	6	0,02	0	0.02	273	1.05	86	0,33
MFI	M	581	1,84	2,23	124	0,48	94	0,36	2324	8.93	1155	4,44	1581	6.07%
1	otal	9135	29,01	35,08	1055	4,05	3021	11,60	2324	0,33	1133	7,77		

3.5 (suite)

		1	Sous-doma	ine				80	us-régic	ns écologiq	ues			
			Total			3a-M		3a-T	T	3a-S	T T	3b-M		3b-T
Juperficie t	lotale (km2)		31492			3596		8710		6626		5504		6888
% super			100%			11,42%		27,66%		21,04%		17,48%		21,87%
K ouperficie forest			82,68%		 	13,81%		33,45%	 	25,45%	<u> </u>	21,14%		26,45%
1011	Aliay e				L		L		L	23,43 %		21,14%		20,43%
							Co	uvert résine	eux					
strate	åge ⁽¹⁾	Superficie km²	% de la superficie totale	% de la super. for, du sous-dom.	Superficie km²	% de la super. for. du sous-dom.	Superficie km²	% de la super. for. du sous-dom.	Superficie km²	% de la super. for. du sous-dom.	Superficie km²	% de la super. for. du sous-dom.	Superficie km²	% de la super. for. du sous-dom.
СС	J	10	0,03	0,04	3	0,01	1	0,00	0	0,00	3	0.01	2	0,01
	М	306	0,97	1,18	41	0,16	119	0,46	28	0,11	43	0.17	74	0.28
EE	7	67	0,21	0,26	8	0,03	38	0,15	8	0,03	3	0.01	10	0.04
	M	833	2,65	3,20	27	0,10	350	1,34	326	1,25	42	0,16	88	0,34
ME	J	3	0,01	0,01	0	0,00		0,00		0,00	3	0,01	0	0,00
	M	13 16	0,04	0,05	1	0,00	1	0,00	0	0,00	5	0,02	5	0,02
PB	M	600	1,91	0,06 2,30	11 119	0,04 0,46	1 378	0.00		0,00	3	0,01	1	0,00
	j	21	0.07	0.08	113	0,46	13	1,45 0.05	49	0,19 0,01	23	0,09	31	0,12
PG	M	66	0,21	0.25	i	0,00	28	0.11	29	0,01 0,11	0	0,00 0,00	5 8	0,02 0.03
	J	0	00,00	0,00		0,00	0	00,00		0,00		0,00		0,00
	M	27	0,09	0,10		0,00	12	0.05	15	0.06		0.00	0	0.00
	М	68	0,22	0,26	8	60,0	20	90,0	11	0,04	22	0,08	7	0,03
R	J	12	0,04	0,05	1	0,00	2	0,01	4	0,02	2	0,01	3	0,01
	M .	91 47	0,29	0,35	4	0,02	24	0,09	30	0,12	22	0,08	11	0,04
SS	J	239	0,15 0,76	0,18 0.92	10	0,04	3	0,01	2	0,01	19	0,07	13	0,05
Tot	tal	2419	7,68	9,29	246	0,04 0,94	32 1022	0,12 3,92	- 66 592	0,34 2,27	70 260	0,27 1,00	37 295	0,14 1,13
Grand	total	23693	75,23	90,99	3040	11,67	6957	26,72	4740	18,20	4039	15,51	4915	18.88
,	······································					P	erturbati	ons d'origin	 е.					
Bru	ılis	105	0,33	0,40	7	0,03	89	0,34	6	0,02		0.00	2	0.01
Coupe	totale	1488	4,73	5,71	151	0,58	289	1,11	286	1,10	269	1.03	493	1,89
Épidémis	s sévere	122	0,39	0,47	4	0,02	76	0,29	39	0,15	0	0,00	2	0,01
Fric	he	358	1,14	1,37	63	0,24	3	10,0	3	0,01	125	0,48	165	0,63
Origine	divers	194	0,62	0,75	22	0,08	34	0,13	112	0,43	8	0,03	19	0,07
Plants		79	0,25	0,30	16	0,06		0,00	0	00,0	29	0,11	34	0,13
Fotal pertu d'orig		2346	7,45	9,01	263	1,01	491	1,89	446	1,71	431	1,66	715	2,75
Total for	restler	26039	82,68	100,00	3303	12,68	7448	28,60	5186	19,92	4470	17,17	5630	21,62
	- 1													

Finalement, les forêts résineuses sont beaucoup moins importantes et surtout composées de pessières noires et de pinèdes blanches et, moins fréquemment, de cédrière et de sapinière. Au niveau de la sous-région écologique méridionale 3a-M, on trouve moins d'érablière à bouleau jaune, de bétulaie jaune à sapin et de pessière, et en contrepartie, on y rencontre plus de peuplements à feuillus tolérants, à feuillus intolérants et résineux, jeunes et à résineux plus thermophyles (PIB, PU, SAB). Pour ce qui est de la sous-région septentrionale 3a-S, le phénomène inverse se produit et ce sont les peuplements d'érables à sucre, d'érables à sucre et résineux, de feuillus intolérants à résineux et de résineux thermophyles (THO, PIB), qui se font plus rares. Les peuplements de pins blancs mûrs se trouvent surtout dans les sous-régions 3a-M et 3a-T et ceux contenant du cèdre mûr se rencontrent surtout dans la 3b-T. Finalement, les peuplements mûrs d'épinettes et ceux de feuillus intolérants sont beaucoup plus fréquents dans la sous-région 3a-S.

Les données des superficies perturbées reflètent la situation quant à leur répartition en superficie par type de couvert, on remarque que sur les 1 488 km² ayant subi une coupe totale, on trouve le tiers de cette superficie dans la sous-région 3b-T. Les superficies en friche sont relativement peu fréquentes et surtout concentrées dans les sous-régions 3b-M et 3b-T où les activités agricoles sont les plus importantes dans le sous-domaine. Finalement, les superficies originant d'épidémies sévères sont surtout situées dans la sous-région 3a-T, là où on trouve les plus grandes concentrations de peuplements résineux.

Mai 1999 39

	·		

4. TYPES DE MILIEUX PHYSIQUES

4.1. Détermination des types de milieux physiques

Le type de milieux physiques est l'unité que nous utilisons pour synthétiser l'ensemble des variables physiques du milieu (drainage, topographie, texture, pierrosité, etc.) qui nous aident le plus à expliquer la répartition de la végétation.

Dans le sous-domaine de l'érablière à bouleau jaune de l'ouest, une grande variété de type de dépôts de surface apparaît sur le territoire. Toutes sortes de combinaisons de variables du milieu peuvent être rencontrées et l'objectif de la formation des types de milieux physiques est de synthétiser ce nombre de combinaisons.

Cinq variables importantes ont été retenues pour réaliser la synthèse : le type de dépôt, l'épaisseur du dépôt, la texture de l'horizon B, la pierrosité et finalement la classe de drainage :

- 1) Les dépôts minéraux sont dissociés des dépôts organiques.
- 2) Les dépôts minéraux sont regroupés en deux classes d'épaisseur soient les sols très minces (moins de 25 cm) et les sols épais (plus de 25 cm).
- 3) Le regroupement de dépôts par classe texturale de l'horizon B est précédé d'un regroupement de dépôts par leur mode de mise en place. Par exemple, les dépôts juxtaglaciaires au sens large (2A): les eskers (2AE), les kames (2AK) et les terrasse de kame (2AT) sont regroupés sous l'étiquette « 2A ». À cette étape, chacun des dépôts regroupés est examiné en regard de sa variabilité de texture (par région écologique) pour à nouveau être classés dans l'une des trois grandes classes texturales (tableau 4.1): grossière (sable), moyenne (loams) et fine (argile). Ainsi, les dépôts dont l'horizon B est généralement dominé par les sables sont classifiés à l'intérieur des dépôts grossiers, ceux dominés par les loams sont classifiés dans les dépôts moyens et ceux dominés par l'argile sont regroupés à l'intérieur de la classe des dépôts fins. L'intensité d'échantillonnage d'un type de dépôt particulier dans une région écologique donnée fait parfois défaut et nous oblige à regrouper un dépôt avec la classe texturale dominante, même si celle-ci est différente du résultat obtenu dans cette même région écologique, lorsque nous n'avons que très peu de relevés.
- 4) Les dépôts sont ensuite regroupés par classe de pierrosité (tableau 4.2). Les dépôts de texture grossière possédant une pierrosité supérieure ou égale à 20 % dans plus de 50 % des relevés sont qualifiés de « pierrosité élevée » et les autres sont qualifiés de « faible pierrosité ». Les dépôts de texture moyenne seront de pierrosité élevée lorsque la pierrosité excède 50 % dans plus de 50 % des relevés et les autres sont qualifiés de « pierrosité faible ». Pour les dépôts de texture fine étant donné leur faible pierrosité, tous appartiennent à la catégorie de faible pierrosité.

Tableau 4.1 : Texture-terrain de l'horizon B des dépôts de surface des régions écologiques du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest (1)

(n)	Reg.	Nb.				Textu	ıre gı	rossiè	re					7	exture	moy	enne				•	Textu	re fir	ne		T.T. ⁽³⁾	T.T ⁽⁴⁾	T.T ⁽⁵⁾	Classe
Dépôt ⁽²⁾		De rel.	SF	SFL	SG	SGL	SM	SML	STF	STG	STGL	LLI	LI	L	LSTF	LSF	LSM	LSG	STFL	A	ALI	AS	LA	LLIA	LSA	Gros.	Moy.	Fine	texturale
1B	3a	3												33	33	33										0	99	0	
16	3b	7							14			14		43		29										14	86	0	
- 4	3a	19	5	16		5		5	5			11		26	16	11										36	64	0	
2A	3b	20		30		5	5	20	5					15		15			5							65	35	0	
	За	74	22	19			8	4	9		1		5	9	5	8			7						1	63	34	1	Grossière ⁽⁶⁾
2B	3b	48	1	17			10	4	Ť			2		13	2	6	2		17					2		56	42	2	Giossiele
	3a			 	!	1	50			 				1									50			50	0	50	
3A	3b	6	-	 	 	-	1 30	17		╁			17	17	17				17					17		17	68	17	
			1	-	-	<u> </u>	╁	- 	11	+			 	H	11		11	11					22		1	44	33	22	
4GS	3a	9	_	22	•		15	В	31	 				\dagger	8		<u>' ' </u>	<u> </u>	8		!				· · · ·	84	16	0	
	3b	13		15		 _	113	 	31	<u> </u>		10	_	22	14	18	3	0	7		† 		2	1	1	22	76	4	
1A	3a	835	12	14		0	1	4	1	┼		2	2	48		19	3		3		1-		-	0	 	13	84	2	
	3b	491	╀	8	°	0	0	3	<u>├</u> -	┼		Ē		_	-	13	٦		9		┼		H	۱Ť	9	45	45	9	Moyenne
1AD	3a	11	9		├ ──	.	9	-	<u> </u>	┼		27	├	9		-	 		9		-			\vdash	g	28	71	0	l
	3b	7	<u> </u>	14	<u> </u>	14	-	<u> </u>		<u> </u>	<u></u>	<u> </u>	₩	43		14	14		ļ	_	 	 	_	 	 				
4GA	3a	4		<u> </u>	<u> </u>	<u> </u>	ـــــ	 	<u> </u>	↓		<u> </u>	25	—		25	_	ļ. <u></u>	 	 	50	 	47	 	┼—	0	50	50	Fine
	3b	6_		<u>L</u>				17	17	<u> </u>		17		<u> </u>		17			<u> </u>	17		L	17	Ĺ	<u> </u>	34	34	34	<u> </u>

⁽¹⁾Les données sont exprimées en % du nombre total de relevés. Le total peut différer légèrement de 100% à cause de l'arrondi.

⁽²⁾Les dépôts sont regroupés selon les indications fournies sur la grille des types de milieu physique. Les dépôts très minces ou organiques sont exclus.

⁽³⁾Total des textures grossières.

⁽⁴⁾Total des textures moyennes.

⁽⁵⁾Total des textures fines.

⁽⁶⁾Quelques dépôts sont classés dans les textures grossières d'après l'étude des profils de sol, qui montre une dominance de texture grossière.

Tableau 4.2 : Pierrosité des dépôts de surface des régions écologiques du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest⁽¹⁾

Classe	Type de	Reg.	Nb.									Clas	se de	pierr	osité	en %									Pierrosité	Pierrosité	Classe synthèse
texturale	Dépôt(2)	éco.	de rel.	0-%	1-%	5-%	10-%	15-%	20-%	25-%	30-%	35-%	40-%	45.%	50-%	55 X	60-%	65-%	70-%	75.%	80-%	85-%	90-%	95-%	> 20%	> 50%	de pierrosité
	1B	3b	7	1	14		29	14			14	14	İ						14						42	14	
	2B	За	77	42	12	16	9	5	4		3	1	1	1	3		3			1					17	7	
	25	3ь	50	44	12	14	8	12	2			2	6						İ	<u> </u>			<u> </u>	<u> </u>	10	0	
	3A	За	3			33		33		33												L			33	0	Faible
Grossière	34	Э	6	83				17	<u> </u>	I						<u> </u>								<u> </u>	0	0	
Ginzaleie	4GS	За	12	42		17	17		8				8	8			<u> </u>	L		<u> </u>				<u> </u>	24	0	
	403	3b	14	79	7					7			7		<u> </u>						<u> </u>	<u> </u>			14	0	
	18	За	Э	L					33	<u> </u>				33	33		L	<u> </u>	<u> </u>				<u> </u>	<u> </u>	99	33	
	2A	За	20	5	5	5	5	5	5	5			1	1	5	l	15	15	10	10	1	10			75	65	Élevée ⁽³⁾
	_ ^^	Эb	20	5	5	5			10	5			5		5		15	5	10	5	5	10	10		85	65	
	1A	За	878	1	0	1	4	8	13	12	14	11	12	4	7	2	6	2	1	0	1	0		0	85	19	Faible
M	I IA	3b	503	1	0	2	4	8	12	13	11	11	10	6	8	4	3	4	3	1	0			0	86	23	Lainie
Moyenne	115	3a	23			Ţ.,	T		1	1	9			4	4	4	9	9	4		17	9	26	4	99	86	Élevée ⁽⁴⁾
	1AD	3b	7	1					T	1						14	14				29	43			100	100	EleA66.
		3a	7	86			14		1														T T	1	0	0	r_:L!_
Fine	4GA	3h	7	57	29	1	1	· · · · · · · · · · · · · · · · · · ·	1	T	14		†	T	1	1	<u> </u>	1	T	1	1	1	 	 	14	G	Faible

⁽¹⁾Les données sont exprimées en % du nombre total de relevés. Le total peut différer légèrement de 100% à cause de l'arrondi.

[🕰] Les dépôts sont regroupés selon les indications fournies sur la grille des types de milieu physique. Les dépôts très minces ou organiques sont exclus.

⁽³⁾Pierrosité généralement >= 20% dans plus de 50% des relevés.

⁽⁹Pierrosité généralement >= 50% dans plus de 50% des relevés.

5) Finalement, les classes de drainages sont regroupées en quatre catégories de régimes hydriques : xérique, mésique, subhydrique et hydrique.

4.2 Présentation des types de milieux physiques

Le résultat de la synthèse des combinaisons possibles répertoriées pour le territoire de l'érablière à bouleau jaune de l'ouest nous fournit dix-neuf types de milieux physiques. Les tableaux 4.3 et 4.4 présentent les résultats pour chacune des deux régions écologiques.

Dans les deux régions écologiques, ce sont les milieux mésiques de texture moyenne et de faible pierrosité qui sont les plus fréquents et représentent pour tout le sous-domaine 57 % des relevés. Il n'y a pas de différence majeure entre les deux régions et les types de milieux physiques s'y trouvent sensiblement dans les mêmes proportions. Les milieux mésiques sur dépôts très minces viennent en deuxième position, loin derrière avec seulement 11 % des relevés.

Les milieux subhydriques de texture moyenne occupent la troisième place avec 8 % des relevés. Viennent ensuite les milieux hydriques sur dépôts organiques que l'on rencontre sur les petites tourbières et en milieux humides des dépressions disséminées un peu partout sur le territoire et qui représentent 6 % des relevés. Les milieux mésiques de texture grossière sont aussi fréquents que les précédents et sont liés aux plaines d'épandage.

Au chapitre 8 portant sur le type écologique, on aura l'occasion de revenir sur les milieux physiques pour les associer aux données sur la végétation qui seront analysées dans les prochains chapitres.

Tableau 4.3 : Types de milieux physiques de la région écologique 3a du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Type de dépôt			Dépô	it minéral			Dépôt organique
Épaisseur du dépôt	Dépôt très mince (<25 cm)			Dépôts épais (>= 25 cm)			Mince ou épais
Texture de l'horizon B	Horizon B de texture variable	Horizon B de texture g (Sf, Sfl, Sg, Sgl, Sm, S	-	Horizon B de texture Lstf, Lsf, Lsm, Lsg, I	•	Horizon B de texture fine (A, Ali, As, La, Llia, Lsa)	Horizon B absent
Pierrosité	Pierrosité variable	Pierrosité faible (< 20% dans plus de 50% des relevés)	Pierrosité élevée (>=20% dans plus de 50% des relevés)	Pierrosité faible (< 50% dans plus de 50% des relevés)	Pierrosité élevée (>= 50% dans plus de 50% des relevés)	Pierrosité faible (< 20% dans plus de 50% des relevés)	Pierrosité absente
Regroupements des dépôts de surface	Roc (R, RIA, MIA)	Fluvioglaciaires et fluviatiles de faible pierrosité (2BE, 4GS, 4S, 3AE, 3AN,3AC)	Fluvioglaciaires de pierrosité élevée (2AE, 2AK, 2AT, 1BF, 1BP)	Glaciaires de faible pierrosité (1A, 1AY, 1AM¹)	Glaciaires de pierrosité élevée (1AD, 8E)	Lacustres et marins (4GA)	Organiques (7T, 7E)
			TY	PE DE MILIEU PHY:	SIQUE		
Classe de régime	TRÈS MINCE	DE TEXTURI	E GROSSIÈRE	DE TEXTUR	RE MOYENNE	DE TEXTURE FINE	ORGANIQUE
hydrique		ET DE FAIBLE PIERROSITÉ	ET DE FORTE PIERROSITÉ	ET DE FAIBLE PIERROSITÉ	ET DE FORTE PIERROSITÉ		
Xérique (Classes 0-10-16) (39)	Xérique mince (24)	Xérique de texture grossière et de faible pierrosité (3)	Xérique de texture grossière et de forte pierrosité (1)	Xérique de texture moyenne et de faible pierrosité (11)			
Mésique (Classes 20-21-30) (921)	Mésique mince (98)	Mésique de texture grossière (67)	Mésique de texture grossière et de forte pierrosité (22)	Mésique de texture moyenne (727)	Mésique de texture moyenne et de forte pierrosité (7)		
Subhydrique (Classes 31-40-41) (144)	Subhydrique mince (3)	Subhydrique de texture grossière (16)		Subhydrique de texture moyenne (115)	Subhydrique de texture moyenne et de forte pierrosité (6)	Subhydrique de texture fine (4)	
Hydrique (Classes 50-51-60-61) (102)		Hydrique sur dépôt mi	néral (43)				Hydrique sur dépôt organique (59)

^{():} nombre de points d'observation écologiques, sur un total de 1206 1: 1AM peut-être classé très mince dans un environnement de sol mince

Tableau 4.4 : Types de milieux physiques de la région écologique 3b du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Type de dépôt			Dépô	t minéral			Dépôt organique
Épaisseur du dépôt	Dépôt très mince (<25 cm)			Dépôts épais (>= 25 cm)			Mince ou épais
Texture de l'horizon B	Horizon B de texture variable	Horizon B de texture (Sf, Sfl, Sg, Sgl, Sm, S	•	Horizon B de texture Lstf, Lsf, Lsm, Lsg, 1	•	Horizon B de texture fine (A, Ali, As, La, Llia, Lsa)	Horizon B absent
Plerrosité	Pierrosité variable	Pierrosité faible (< 20% dans plus de 50% des relevés)	Pierrosité élevée (>=20% dans plus de 50% des relevés)	Pierrosité faible (< 50% dans plus de 50% des relevés)	Pierrosité élevée (>= 50% dans plus de 50% des relevés)	Pierrosité faible (< 20% dans plus de 50% des relevés)	Pierrosité absente
Regroupements des dépôts de surface	Roc (R, RIA, MIA)	Fluvioglaciaires et fluviatiles de faible pierrosité (2BE, 4GS, 4S, 3AE, 3AN,3AC)	Fluvioglaciaires de pierrosité élevée (2AE, 2AK, 2AT, 1BF, 1BP)	Glaciaires de faible pierrosité (1A, 1AY, 1AM¹)	Glaciaires de pierrosité élevée (IAD, 8E)	Lacustres et marins (4GA)	Organiques (7T, 7E)
			TY	PE DE MILIEU PHYS	SIQUE		
Classe de régime	TRÈS MINCE	DE TEXTURI	E GROSSIÈRE	DE TEXTUR	RE MOYENNE	DE TEXTURE FINE	ORGANIQUE
hydrique		ET DE FAIBLE PIERROSITÉ	ET DE FORTE PIERROSITÉ	ET DE FAIBLE PIERROSITÉ	ET DE FORTE PIERROSITÉ		
Xérique (Classes 0-10-16) (31)	Xérique mince (25)		Xérique de texture grossière et de forte pierrosité (1)	Xérique de texture moyenne et de faible pierrosité (2)	Xérique de texture moyenne et de forte pierrosité (3)		
Mésique (Classes 20-21-30) (647)	Mésique mince (127)	Mésique de texture grossière (55)	Mésique de texture grossière et de forte pierrosité (19)	Mésique de texture moyenne (443)	Mésique de texture moyenne et de forte pierrosité (2)	Mésique de texture fine (1)	
Subhydrique (Classes 31-40-41) (61)	Subhydrique mince (6)	Subhydrique de texture grossière (11)		Subhydrique de texture moyenne (43)		Subhydrique de texture fine (1)	
Hydrique (Classes 50-51-60-61) (101)	Hydrique mince (1)	Hydrique sur dépôt mi	néral (33)				Hydrique sur dépôt organique (67)

^{():} nombre de points d'observation écologiques, sur un total de 840

^{1: 1}AM peut-être classé très mince dans un environnement de sol mince

5. Groupes d'espèces indicatrices

5.1. Groupes écologiques élémentaires

5.1.1. Détermination des groupes écologiques élémentaires

Étant donné le grand nombre d'espèces de sous-bois répertoriées sur ce territoire, pour les classifier, nous les regroupons sur la base d'un certain nombre de critères dont les variables du milieu physique (dépôt, drainage, type d'humus) et de la végétation (espèces forestières présentes, densité du peuplement, origine, etc.), ainsi que leur distribution géographique. De plus, nous analysons les différents degrés d'association entre les espèces pour déterminer celles qui ont le plus d'affinité à vivre ensemble.

L'exercice de classification des espèces a permis de former 17 groupes (groupes écologiques élémentaires), contenant de 1 à 6 espèces ayant des caractéristiques écologiques semblables. Malgré leur forte association à un groupe, certaines espèces n'ont pas été retenues, soit parce qu'elles étaient trop peu fréquentes ou, parce qu'elles présentaient une difficulté d'identification sur le terrain. Le tableau 5.1 décrit chacun des groupes élémentaires à l'exception des groupes « SMT » et « DIR », dont le nombre de relevés associé à ces groupes était trop faible. Pour synthétiser les données écologiques des espèces qui composent un groupe élémentaire et obtenir un portrait de celui-ci, le recouvrement total de chacun des groupes à l'intérieur de chaque relevé est calculé. Ces données (exprimées en indice « FA » à la figure 5.1) sont ensuite utilisées pour déterminer l'autécologie des groupes élémentaires en considérant tous les relevés dans lesquels le recouvrement d'un groupe est supérieur à 10 % (voir annexe 1).

Dans le tableau 5.1, les groupes sont classés de façon prioritaire par ordre de régime hydrique (du plus sec au plus humide) et par ordre croissant de richesse relative. Le régime hydrique provient d'une analyse des classes de drainage des relevés où on trouve les espèces des groupes élémentaires. La richesse relative (tableau 5.2) est issue de l'addition des indices de cinq variables significatives, soit le pH de l'humus (tableau 5.3), la présence de "seepage" (tableau 5.4), la pente arrière (tableau 5.5), le type d'humus (tableau 5.6) et la richesse floristique (tableau 5.7).

Mai 1999 47

Figure 5.1 : Exemple de calcul de différents indices en rapport avec la fréquence-abondance (FA)

Indice fréquence-abondance (FA)
Étape 1 - Calcul du pourcentage de densité de couvert par relevé : lors d'une sommation, toujours additionner la valeur correspondant à la mi-classe du code de densité de couvert de l'élément le plus important à la valeur correspondant au bas de classe du code de densité de couvert de chacun des autres éléments.

Code-terrain de densité de couvert	Densité de couvert (%)	Bas de classe (%)	Mi-classe (%)
A	> 80	81	90
В	61-80	61	70
С	41-60	41	50
D	26-40	26	33
E	6-25	6	15
F	> 1-5	2	3

% de densité de couvert d	lu groupe élémentaire AUR sur drainas	ge 51 pour le relevé # 1
Espèce du groupe	Code-densité	Valeur retenue
AUR	C	50
GOR	D	26
EQS	F	2
-		TOTAL: 78 %

Étape 2 - Calcul de l'indice pour l'ensemble des relevés

$$FA = \sqrt{\overline{a} \times f}$$

FA = indice fréquence-abondance

 \overline{a} : abondance moyenne en %

f: fréquence en %

Calcul de l'indice du groupe élémentaire AUR sur drains	ige 51 pour tous les relevés lorsque le couvert est au moins égal à 5 %*
N° de relevés	% de couvert
1	78
2	3
3	15
4	77
5	12
$FA = \sqrt{\frac{78 + 15 + 77 + 12}{4}} \times \left(\frac{4}{5} \times 100\right)$	
$FA = \sqrt{45.50 \times 80,00}$	
FA = 60,33	* La valeur de 5 % correspond à la valeur minimale retenue pour les domaines 1, 2, 3 et 4, alors qu'elle est de 10 % pour les autres.

2) Pourcentage de l'indice fréquence-abondance (% FA)
%
$$FA = \left(\frac{FA^2}{\sum FA^2 dela \text{ var } iable}\right) \times 100$$

	Calcul du pourcentage de l'indice FA du groupe élémentaire AUR pour chacune des classes de drainage													
	Drainage	FA	FA ²	% FA										
30		14,85	220,52	(220,52/16 829,47) 100 =	1,3									
40		82,77	6 850,87	(6 850,87/16 829,47) 100 =	40,7									
50		78,22	6 118,37	(6 118,37/16 829,47) 100 =	36,4									
51		60,33	3 639,71	(3 639,71/16 829,47) 100 =	21,6									
		TOTAL:	16 829,47	TOTAL:	100									

Tableau 5.1 : Préférences des groupes écologiques élémentaires du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

IDENTIFICATION	ESPĒCES	VARIABLES PHYSIQUES(2)	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
VAM (78 relevés) ^{ca}	Vaccinium myrtilloides (VAM) Kalmia angustifolia (KAA) Linea borealis (LIB)	a angustifolia (KAA) Xérique		TYPE PHYSIONOMIQUE Arbustif TYPE DE COUVERT Résineux*, mélangé résineux ESPÈCE DOMINANTE EPN**, EPR**, PIB, EPB, SAB DENSITÉ D*, C	ORIGINE Brulis Coupe totale PERTURBATION Coupe d'éclaircie Epidémie légère	SOUS-RÉGION 3a-S
VAA (64 relevés)	Vaccinium angustifolia (VAA) Dicranum sp. (DIS) Cladina rangiferina (CLR) Gaultheria procumbens (GAP)	RÉGIME HYDRIQUE Xérique POSITION TOPOGRAPHIQUE Situation sur la pente: sans préférence Versant: sans préférence Pente: > 40% DÉPÓT Fluvioglaciaire (2B)*, glaciolacustre (4GS), roc (R) TEXTURE DE L'HORIZON "B" Grossière ÉPAISSEUR D'HUMUS 11 à 20 cm ALTITUDE 250 à 400 m	RICHESSE RELATIVE Pauve TYPE D'HUMUS Mor PH DE L'HUMUS < 4,2° RICHESSE FLORISTIQUE Pauvre	TYPE PHYSIONOMIQUE Sans préférence TYPE DE COUVERT Résineux* ESPÈCE DOMINANTE EPR**, EPN*, PIB*, BOP DENSITÉ C, D	ORIGINE Friche** Brulis PERTURBATION Epidémie légère	SOUS RÉGION 3a-S
PLS (72 rolevés)	Pleurozium schreberi (PLS) Polytrichum sp. (POS) Bazzania trilobata (BAT) Hylocomium splendens (HYS)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Terrain plat*, dépressions Bas versant Pente. 0 à 3%*, > 40% DÉPÔT Glaciolacustre (4GS)*, fluvioglaciaire (2B)*, organique (7T)* TEXTURE DE L'HORIZON "B" Grossière ÉPAISSEUR D'HUMUS > 41 cm , 11 à 20 cm ALTITUDE 250 à 299 m	RICHESSE RELATIVE Pauvre TYPE D'HUMUS Sol organique*, mor , tourbe PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE Pauvre	TYPE PHYSIONOMIQUE Arbustif TYPE DE COUVERT Résineux*, mélangé résineux ESPÈCE DOMINANTE EPR**, EPN*, THO*, SAB DENSITÉ D*, C	ORIGINE Friche Brulis PERTURBATION Chablis partiel Epidémie légère	SOUS RÉGION 3b-T 3a-S

Tableau 5.1 (suite)

IDENTIFICATION	ESPÈCES	VARIABLES PHYSIQUES ^[2]	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
DIE (228 relevés)	Diervilla lonicera (DIE) Aster macrophyllus (ASM) Pteridium aquilinum (PTA)	RÉGIME HYDRIQUE Xérique mésique POSITION TOPOGRAPHIQUE Sans préférence Bas versant Pente: 9 à15% DÉPÔT Fluvioglaciaire (2A , 2B) TEXTURE DE L'HORIZON "B" Grossière ÉPAISSEUR D'HUMUS 1 à 5 cm ALTITUDE 250 à 299 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Mor PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Sans préférence TYPE DE COUVERT Mélangé feuillu ESPÈCE DOMINANTE PET, PEG, BOP, PIB DENSITÉ C	ORIGINE Brulis PERTURBATION Coupe d'éclaircie Epidémie légère	SOUS.RÉGION 3a-S
ERP (576 releves)	Acer pensylvanicum (ERP) Medeola virginiana (MEV) Polygonatum pubescens (POP) Smilacina racemosa (SMR) Taxus canadensis (TAC)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Haut de pente , sommet , mi-pente Haut versant , moyen versant Pente: > 40% , 30 à 39% , 9 à 15% DÉPÔT Roc (R) , till (1 a) TEXTURE DE L'HORIZON "B" Moyenne EPAISSEUR D'HUMUS 6 à 10 cm , 1 à 5 cm ALTITUDE 450 à 499m , 350 à 399 m	RICHESSE RELATIVE Moyenna TYPE D'HUMUS Moder PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Pauwe	TYPE PHYSIONOMIQUE Forêt TYPE DE COUVERT Feuillu ESPÈCE DOMINANTE HEG*, CHR, PRU, ERS DENSITÉ A	ORIGINE Non décelable PERTURBATION Coupe partielle Chablis Partiel	SOUS RÉGION 3b-M 3a-M
CLB (116 relevés)	Clintonia borealis (CLB) Cornus canadensis (CON) Maianthemum canadense (MAC) Trientalis borealis (TRB) Amelanchier sp. (AME)	RÉGIME HYDRIQUE Mésique subhydrique POSITION TOPOGRAPHIQUE Replat, sommet Bas versant Pente: 3 à 8%, 8 à 15% DÉPÔT Fluvioglaciaire (2B), glaciolacustre (4GS) TEXTURE DE L'HORIZON "B" Grossière ÉPAISSEUR D'HUMUS 6 à 10 cm, 1 à 5 cm ALTITUDE 150 à 199 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Mor PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Forêt TYPE DE COUVERT Mélangé résineux , mélangé feuillu ESPÈCE DOMINANTE PIB , EPR , BOP , ERR , PEG DENSITÉ C , B	ORIGINE Brulis PERTURBATION Coupe d'éclaircie Epidémie légère	SOUS RÉGION 3a-S 3a-T

Tableau 5.1 (suite)

IDENTIFICATION	ESPÉCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
ERE (1302 relevés)	Acer spicatum (ERE) Driopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus cornuta (COC) Lonicera canadensis (LON)	RÉGIME HYDRIQUE Mésique subhydrique POSITION TOPOGRAPHIQUE Bas de pente , mi-pente Bas versant Pente: 9 à 15% , 4 à 8% DÉPÔT Till (1A , 1AD) , fluvioglaciaira (2A , 2B) TEXTURE DE L'HORIZON "B" Sans préférence ÉPAISSEUR D'HUMUS 1 à 5 cm , 6 à 10 cm ALTITUDE 250 à 299 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Moder , mor PH DE L'HUMUS > 4,2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Forêt TYPE DE COUVERT Mélangé feuillu , feuillu ESPÈCE DOMINANTE FRN , BOJ , ERR , PET , BOP DENSITÉ	ORIGINE Non décelable PERTURBATION Coupe d'éclaircie Epidémie légère	SOUS RÉGION 3a-T
VII. (262 relevés)	Viburnum alnifolium (VIL) Lycopodium lucidulum (LYL) Lycopodium obscurum (LYO) Streptopus roseus (STR)	RÉGIME HYDRIQUE Mésique subhydrique POSITION TOPOGRAPHIQUE Replat , mi-pente , bas de pente Haut versant , moyen versant Pente: 4 à 8% , 9 à 15% DÉPÔT Till (1A) TEXTURE DE L'HORIZON "B" Fine , moyenne ÉPAISSEUR D'HUMUS 1 à 5 cm , 6 à 10 cm ALTITUDE 450 à 499 m , 350 à 399 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Moder PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Forêt TYPE DE COUVERT Feuillu ESPÈCE DOMINANTE BOJ, ERS, HEG, PRU DENSITÉ A	ORIGINE Non décelable PERTURBATION Coupe partielle	SOUS-RÉGION 3a-T 3a-M
OXM (195 relevés)	Oxalis montana (OXM) Sorbus americana (SOA) Coptis groenlandica (COG) Vibumum cassinoides (VIC)	RÉGIME HYDRIQUE Subhydrique POSITION TOPOGRAPHIQUE Dépression fermée , terrain plat Bas versant Pente: 0 à 3% , 4 à 8% DÉPÓT Glaciolacustre (4GS) , organique (7T) , fluvioglaciaire (2B) TEXTURE DE L'HORIZON "B" Fine , grossière ÉPAISSEUR D'HUMUS > 41 cm , 11 à 20 cm ALTITUDE 350 à 399 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Tourbe , sol organique , mor PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Forêt TYPE DE COUVERT Mélangé résineux , résineux ESPÈCE DOMINANTE FRN , EPN , ERE , THO , BOJ DENSITÉ C , B	ORIGINE Non décelable PERTURBATION Epidémie légère Coupe d'éclaircie	SOUS-RÉGION 3a-S 3a-T

Tableau 5.1 (suite)

IDENTIFICATION	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
TIC (267 relevés)	Tisrella cordifolia (TIC) Viola sp. (VIS) Driopteris disjuncta (DRD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femina (ATF)	RÉGIME HYDRIQUE Subhydrique POSITION TOPOGRAPHIQUE Dépressions , bas de pente Bas versant Pente: 0 à 3% , 4 à 8% DÉPÔT Till (1AD) , organique (/T) TEXTURE DE L'HORIZON "B" Fine" ÉPAISSEUR D'HUMUS 11 à 20 cm , > 41 cm ALTITUDE 250 à 299 m , 450 à 499 m	RICHESSE RELATIVE Riche TYPE D'HUMUS Tourbe*, mull* PH DE L'HUMUS > 4,2* RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arbustif TYPE DE COUVERT Feuillu ESPÈCE DOMINANTE FRN**, BOJ, THO, PET DENSITÉ Sans préférence	ORIGINE Friche Coupe totale PERTURBATION Chablis partiel Coupe partielle	SOUS-RÉGION 3b-M 3b-T
RUP (130 relevés)	Rubus pubescens (RUP) Cornus alternifolia (COA) Mnium sp. (MNS) Driopteris phegopteris (DRP)	RÉGIME HYDRIQUE Subhydrique POSITION TOPOGRAPHIQUE Dépressions*, terrain plat Bas versant Pente: 0 à 3% DÉPÔT Sol organique (7T)*, till (1AD)* TEXTURE DE L'HORIZON "B" Fine*, ne s'applique pas* ÉPAISSEUR D'HUMUS > 41 cm , 11 à 20 cm ALTITUDE 250 à 299 m	RICHESSE RELATIVE Riche TYPE D'HUMUS Tourbe**, sol organique* PH DE L'HUMUS > 4,2* RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Forêt TYPE DE COUVERT Mélangé feuillu ESPÈCE DOMINANTE FRN**, BOJ*, THO* DENSITÉ Sans préférence	ORIGINE Coupe totale PERTURBATION Epidémie légère	SOUS-RÉGION 3a-M 3b-T
RUI (42 refevés)	Rubus ideaus (RUI)	RÉGIME HYDRIQUE Subhydrique POSITION TOPOGRAPHIQUE Bas de pente , dépression fermée , replat Bas versant Pente: 0 à 3% , 4 à 8% , 9 à 15% DÉPÔT Fluvioglaciaire (28)* TEXTURE DE L'HORIZON "B". Grossière ÉPAISSEUR D'HUMUS 1 à 5 cm ALTITUDE 450 à 499 m , 250 à 299 m	RICHESSE RELATIVE Riche TYPE D'HUMUS Mull**, moder PH DE L'HUMUS > 4,2* RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arbusid*** TYPE DE COLIVERT Feuillu ESPÈCE DOMINANTE PEG , PET , ERR , EPR , BOJ DENSITÉ D** , C	ORIGINE Friche** Coupe totale* PERTURBATION Coupe partielle	SOUS-RÉGION 3b-M 3a-S

Tableau 5.1 (suite)

IDENTIFICATION	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
SPS (94 relevés)	Sphagnum sp. (SPS) Sphagnum magellanicum (SPM) Sphagnum girgensohnii (SPG) Sphagnum fuscum (SPF) Sphagnum squarosum (SPQ) Nemopanthus mucronatus (NEM)	RÉGIME HYDRIQUE Hydrique POSITION TOPOGRAPHIQUE Dépréssions**(*), terrain plat** Bas versant Pente: 0 à 3%** DÉPÔT Sol organique (*7*)**, glaciolacustre (4GS)* TEXTURE DE L'HORIZON "B" Non appliquable**, fine* ÉPAISSEUR D'HUMUS > 41 cm** ALTITUDE 250 à 299 m		TYPE PHYSIONOMIQUE Arbustit* TYPE DE COUVERT Résineux** ESPÈCE DOMINANTE EPN**, THO**, EPR*, FRN*, SAB DENSITÉ D*	ORIGINE Non décelable Coupe totale PERTURBATION Chablis partiel Epidémie légère	SOUS RÉGION 3a-S
AUR (89 relevés)	Ainus rugosa (AUR) Osmunda cinnamomea (OSC)	RÉGIME HYDRIQUE Hydriqua POSITION TOPOGRAPHIQUE Dépressions™, terrain plat® Bas versant Pente: 0 å 3%™ DÉPÔT Sol organique (*T)™, glaciolacustre (4GS)® TEXTURE DE L'HORIZON "B" Ne s'applique pas™, fine® ÉPAISSEUR D'HUMUS > 41 cm™, 11 à 20 cm ALTITUDE 150 à 199 m, 250 à 299 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Sol organique**, Tourbe** PH DE L'HUMUS < 4.2* RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arbustif TYPE DE COUVERT Résineux* ESPÈCE DOMINANTE FRN**, EPN*, THO* DENSITÉ D, C	ORIGINE Friche Coupe totale PERTURBATION Epidémie légère Chablis partiel	SOUS-RÉGION 3a-S 3c-M
GRS (55 relevés)	Graminée sp. (GRS) Carex sp. (CAX) Salix sp. (SAL)	RÉGIME HYDRIQUE Hydrique POSTION TOPOGRAPHIQUE Dépressions", terrain plat" Bas versant Pente: 0 à 3%" DÉPÔT Organique (71)", glaciolacustre (4GS)", fluvioglaciaire (2B)" TEXTURE DE L'HORIZON "B" Ne s'applique pas", fine ÉPAISSEUR D'HUMUS > 41 cm", 11 à 20 cm ALTITUDE 250 à 299 m	RICHESSE RELATIVE Mayenne IYPE D'HUMUS Tourbe", muli" PH DE L'HUMUS >4,2" RICHESSE FLORISTIQUE Mayenne	TYPE PHYSIONOMIQUE Arbustif* TYPE DE COUVERT Résineux ESPÈCE DOMINANTE FRN*, PET, EPN, EPR DENSITÉ D*, C	ORIGINE Friche** Coupe totale PERTURBATION Chablis partiel Coupe partielle	SOUS-RÉGION 3a-M 3b-M 3b-T

O Les préférences sont compilées avec l'indice FA | indice fréquence/abondance = (fréquence relative X couvert moyen) 12 1

Seules les classes où on retrouve 1% des relevés et plus sont retenues.

A Le nombre de relevés où le groupe écologique élémentaire est présent avec un couvert d'au moins 5%.

Les données marquées d'une étoile (*) signifient que pour la variable considérée, la valeur de l'indice FA de la classe retenue est au moins une fois et demie supérieure à la valeur moyenne de l'indice FA de foutes les classes confondues et au moins deux fois supérieure si elle est marquée de deux étoiles (**). Dans les autres cas, quand plusieurs classes d'une même variable apparaissent, elles sont présentées dans un ordre décroissant d'importance.

Tableau 5.2 : Richesse relative des groupes écologiques élémentaires du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Groupe cologique émentaire	Régime hydrique	Indice ph	Richesse relative du ph	Indice seepage	Richesse relative du seepage	Indice pente arrière	Rich. rel. de la pente arrière	indice humus	Richesse relative de l'humus	Indice richesse floristique	Richesse floristique relative	Indice richesse relative ⁽¹⁾	Richesse relative ⁽²⁾
	HY	0,00	P	0,00	P	0,00	P	0,25	P	0,00	Р	0,25	Pauvre
SMT	XÉ	0,00	P	0,30	P	2,13	М	0,53	Р	0,75	Р	3,93	
VAA	XE-ME	0,49	М	0,35	М	2,00	М	0,89	М	1,09	М	4,82	
DIE	ME-SU	0,50	M	0,33	M	2,33	М	1,12	М	1,09	M	5,37	l
CLB	HY	0,33	P	0,13	Р	0.85	Р	3,27	М	0,80	Р	5,38	l
SPS	ME	0,33	м	0,20	P	1.70	M	2,27	М	0,80	Р	5,76	1
PLS	XE	0,74	M	0,08	P	1,17	Р	3,76	М	0,63	Р	6,38	l
VAM	SU	0,65	M	0,65	М	3,17	М	0,39	P	1,66	M	6,52	Moyenne
OXM	HY	1,68	R	0,31	М	1,70	Р	3,00	М	2,23	R	8,92	1
AUR	ME	0.82	M	0,53	M	4,26	М	3,05	M	0,57	P	9,23	ł
ERP	ME-SU	1,33	R	0,86	M	4,05	М	2,00	М	1,33	M	9,57	1
ERE	SU	2,48	R	0,60	М	3,71	М	4,00	R	1,09	M	11,88	
RUI	HY	6,14	R	0,33	М	2,41	М	3,33	М	1,66	M	13,87	<u> </u>
GRS				1,31	R	6,14	R	0.83	М	3,00	R	15,09	1
TIC	SU	3,81	R B	0,00	P	0,35	P	>4.00	R	2,17	R	>15.09	Riche
							B	>4.00	R	4,07	R	>15.09] ''''''
								>4.00	R	1,00	М	>15.09	
DIR RUP VIL	ME SU ME-SU	>7.42 7,42 0,75	R R M	1,00 1,16	R R	4,56 4,50	R M	>4.00	R	4,07			

⁽¹⁾ Indice = somme des indices des cinq (5) variables les plus significatives: le ph de l'humus, le seepage, la pente arrière, l'humus et la richesse floristique.

Moyenne: 4,00 < indice < 14,00

Riche: >= 14,00

⁽²⁾ Pauvre: Indice =< 4,00

Tableau 5.3 : Richesse relative des groupes écologiques élémentaires du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon le ph de l'humus

Groupe écologique			(CLASSE D	E PH DE	L"HUMUS	S ⁽¹⁾			Indice	Richesse
élémentaire	3,5 à 3,9	4,0	4,1	4,2	4,3	4,4	4,5	4,6 à 4,9	≥5,0	ph ⁽²⁾	relative ⁽³⁾
SMT	0	100	0	0	0	0	0	0	0	0,00	
VAA	42	15	12	13	3	5	5	3	2	0,22	Pauvre
SPS	51	9	9	7	7	7	2	3	6	0,33	
DIE	30	16	12	9	5	4	14	6	4	0,49	
CLB	28	14	13	11	10	7	8	5	3	0,50]
ОХМ	22	15	13	10	9	13	9	3	5	0,65	
VAM	7	23	13	14	19	3	13	0	7	0,74	Moyenne
VIL	3	21	17	16	13	10	14	4	2	0,75	
PLS	7	18	20	11	19	6	8	3	8	0,79	
ERP	13	16	13	13	11	15	12	4	3	0,82	
ERE	8	13	11	11	11	12	17	8	9	1,33	
AUR	23	6	4	4	16	2	12	10	22	1,68	
RUI	0	8	17	4	10	32	20	0	10	2,48	Riche
TIC	2	8	4	7	14	16	12	18	20	3,81]
GRS	0	6	3	5	9	14	12	19	32	6,14]
RUP	0	5	3	4	7	15	21	22	24	7,42	

⁽¹⁾ a) Les données sont exprimées en % de l'indice FA [Indice fréquence/abondance = (fréquence relative X couvert moyen) 1/2].

(3) Pauvre: indice ≥ 0,35

Moyenne: 0,35 < indice < 1,00

Riche: indice \geq 1,00

b) Seules les classes où on retrouve 10 relevés et plus sont retenues.

c) Seulement les relevés où le groupe écologique élémentaire occupe au moins 5% de couvert sont considérés.

lndice = classe de ph moins acide(ph 4,3 à 5,0) / classe de ph plus acide(p.h 3,5 à 4,2)

Tableau 5.4 : Régime hydrique des groupes écologiques élémentaires et richesse relative du sousdomaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon le seepage

Groupe écologique			- 0	CLASS	SE DE	DRA	INAGI	E ⁽¹⁾			Régime	Indice	Richesse
élémentaire	10	16	20	21	30	31	40	41	50	60	hydrique	seepage ⁽³⁾	relative ⁽⁴⁾
VAM	35	16	4	0	3	2	6	4	10	20	XE	0,06	
SPS	2	23	0	2	1	3	6	4	16	43	НҮ	0,10	
PLS	29	15	4	4	5	6	8	4	13	12	ME	0,16	Pauvre
VAA	35	27	5	10	4	2	6	5	5	2	XE	0,20	
CLB	12	15	12	6	12	7	12	8	9	7	ME-SU	0,27	
AUR	2	6	0	0	1	7	9	15	26	34	HY	0,28	
DIE	32	12	15	7	10	10	6	6	3	0	XE-ME	0,29	
GRS	2	8	2	3	4	5	11	15	26	24	HY	0,30	
ERP	6	7	26	14	18	10	5	8	2	3	ME	0,48	Moyenne
RUI	2	14	7	4	12	10	18	19	9	7	SU	0.48	
ОХМ	5	14	7	12	9	12	10	10	11	10	SU	0,52	
ERE	6	6	13	17	13	14	10	13	6	3	ME-SU	0,77	
RUP	1	6	1	7	5	12	11	28	17	12	SU	0,89	*
VIL	3	3	16	33	19	15	5	4	1	1	ME-SU	1,08	Riche
TIC	1	3	4	8	9	19	13	28	10	5	SU	1,22	

⁽¹⁾ a) Les données sont exprimées en % de l'indice FA [Indice fréquence/abondance = (fréquence relative X couvert moyen) 1/2] .

Pauvre: indice ≤ 0,25

Moyenne : 0,25 < indice < 0,80

Riche : indice ≥ 0,80

b) Seules les classes où on retrouve 10 relevés et plus sont retenues.

c) Seulement les relevés où le groupe écologique élémentaire occupe au moins 5% de couvert sont considérés.

⁽²⁾ Indice seepage = classes de drainage avec seepage(21+31+41+51) / classes de drainage sans seepage(10+16+20+30+40+50+60)

⁽³⁾ Richesse relative selon l'indice seepage

Tableau 5.5 : Richesse relative des groupes écologiques élémentaires du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon la pente arrière

Groupe		Classe de p	ente arrière ⁽¹⁾		Indice de pente	. (3)
écologique élémentaire	0 à 50 mètres	50 à 100 mètres	100 à 200 mètres	plus de 200 mètres	arrière ⁽²⁾	Richesse relative ⁽³⁾
SPS	41	14	10	35	1,44	
PLS	40	23	18	18	1,48	
VAM	40	22	16	22	1,50	Pauvre
SMT	37	19	0	45	1,73	
VAA	34	24	25	17	1,94	
GRS	31	18	21	30	2,23	
AUR	29	14	21	35	2,41	
CLB	28	27	24	20	2,54	
DIE	27	29	26	18	2,70	
RUI	25	26	30	19	3,00	Moyenne
DIR	25	54	22	0	3,04	Moyenne
ERP	25	29	25	22	3,04	
ОХМ	23	21	27	30	3,39	
VIL	22	26	32	21	3,59	
ERE	20	26	28	25	3,95	
RUP	19	22	22	37	4,26	Riche
TIC	18	19	25	38	4,56	Aiche

⁽¹⁾ a) Les données sont exprimées en % de l'indice FA [Indice fréquence/abondance = (fréquence relative X couvert moyen) 1/2].

Moyenne = 2,00 < indice < 4,00

Riche = indice ≥ 4,00

b) Seulement les relevés où le groupe écologique élémentaire occupe au moins 5% de couvert sont considérés.

^{|(2)} Indice = (Classes de pente arrière > 50 m) / (Classes de pente arrière < 50 m)

⁽³⁾ Pauvre = indice ≤ 2,00

Tableau 5.6 : Richesse relative des groupes écologiques élémentaires du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon le type d'humus ou de l'horizon organique

Groupe écologique			TYF	PE D'HUMU	JS ⁽¹⁾			Indice humus ⁽³⁾	Richesse relative ⁽⁴⁾
élémentaire	Mor	Sol org.	Tourbe	Moder	Mull	Anmoor	NA ⁽²⁾		
SMT	4	55	32	1	0	7	0	0,25	
ОХМ	18	24	35	5	2	1	15	0,39	Pauvre
VAA	17	49	26	8	1	0	0	0,53	
TIC	29	11	36	14	10	0	0	0,83	
DIE	44	2	4	18	21	0	10	0,89	
CLB	26	12	18	18	11	14	1	1,12	
ERE	20	6	9	24	16	20	4	2,00	
PLS	15	11	13	18	16	0	27	2.27	Moyenne
AUR	2	25	18	1	5	46	2	3,00	Moyenne
ERP	21	5	3	39	25	7	0	3,05	
SPS	11	8	15	12	24	22	8	3,27	
GRS	3	16	17	2	. 8	19	35	3,33	
VAM	17	1	11	47	17	16	0	3,76	
RUI	5	14	18	5	15	38	4	4,00	
DIR	0	0	0	56	44	0	0	> 4.00	Riche
RUP	0	70	30	0	0	0	0	> 4.00	THOM
VIL	0	0	0	0	0	0	0	> 4.00	

⁽¹⁾ a) Les données sont exprimées en % de l'indice FA [Indice fréquence/abondance = (fréquence relative X couvert moyen) 1/2].

Riche = indice ≥ 4,00

b) Seules les classes où on retrouve 10 relevés et plus sont retenues.

c) Seulement les relevés où le groupe écologique élémentaire occupe au moins 5% de couvert sont considérés.

⁽²⁾ NA (non appliquable)

⁽³⁾ Indice = (Moder+Mull) / Mor

⁽⁴⁾ Pauvre = indice < 0,60 Moyenne = 0,60 < indice < 4,00

Tableau 5.7 : Richesse relative des groupes écologiques élémentaires du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon la richesse floristique

Groupe écologique						Classe	de nom	bre d'esp	èces ⁽¹⁾						Indice de richesse	Richesse
élémentaire	7 à 14	15 à 19	20 à 24	25 et 26	27 et 28	29 et 30	31 et 32	33 et 34	35 et 36	37 et 38	39 et 40	41 et 42	43 et 44	45 à 52	floristique ⁽²⁾	relative ⁽³⁾
SMT	37	19	6	16	0	17	5	0	0	0	0	0	0	0	0,00	
ERP	5	11	10	10	8	9	8	7	7	6	6	5	4	4	0,64	
VAM	11	7	8	6	11	7	9	6	9	2	7	7	6	4	0,69	Pauvre
VAA	8	6	7	6	10	8	10	7	7	5	6	9	7	5	0,84	, , , , , ,
PLS	14	9	6	4	9	4	4	5	7	5	9	10	4	9	0,98	
SPS	14	7	7	5	4	7	6	6	6	4	9	8	7	9	0,98	
VIL	4	6	7	8	6	7	8	7	7	9	8	8	7	8	1,17	
CLB	1	3	6	8	10	8	9	8	9	7	10	7	8	7	1,24	
DIE	0	1	5	9	11	10	9	10	8	7	9	8	7	6	1,22	Moyenne
RUI	10	10	5	7	7	3	4	10	8	12	4	2	14	5	1,20	
ERE	2	4	6	6	7	7	7	8	8	9	9	8	10	9	1,56	
GRS	3	5	5	5	6	3	5	6	7	9	9	9	13	14	2,09	
OXM	0	1	5	5	7	7	7	7	8	6	9	10	13	14	2,09	
DIR	0	0	2	7	14	2	4	2	17	34	10	0	0	9	2,48	Riche
AUR	5	4	4	4	3	3	3	4	6	8	13	9	18	15	2,81	1,,,,,,,,,
TIC	0	1	3	4	3	5	5	7	9	10	9	14	14	17	3,81]
RUP	1	1	2	2	3	3	3	5	7	10	9	12	18	24	5,67	

⁽¹⁾ a) Les données sont exprimées en % du nombre total de relevés. Le total peut différer légèrement de 100% à cause de l'arrondi.
b) Seulement les relevés où le groupe écologique élémentaire occupe au moins 5% de couvert sont considérés.

Moyenne = 1,00 < Indice < 2,00

Riche = indice ≥ 2,00

⁽²⁾ Indice = (nbr de relevés ≥ 33 espèces) / (nbr de relevés< 33 espèces)

⁽³⁾ Pauvre = indice ≤ 1,00

5.1.2. Présentation des groupes écologiques élémentaires

Sur les 15 groupes écologiques élémentaires retenus, 10 ont un régime hydrique plutôt humide et 5 ont une tendance au régime plutôt sec. Les groupes xériques « VAA » et « VAM » sont rencontrés surtout dans des relevés où le drainage est de classe 10 ou 16. Le groupe « VAM » se trouve également dans des relevés où le drainage est plus humide (classes 50 et 60), parce qu'il contient le kalmia angustifolia (KAA) qui est considéré comme une des rares plantes à préférer les extrêmes sur le plan du régime hydrique, soit très sec ou très humide. Ces 2 groupes sont de richesse relative pauvre et leurs différents indices (Ph, pente arrière humus, seepage, richesse floristique) montrent qu'ils préfèrent nettement des conditions moins favorables. On les trouve surtout sur des dépôts de texture grossière (sable), sous un couvert d'épinettes noires ou rouges de faible densité, plus fréquents dans la sous-région septentrionale 3a-S.

Le groupe « DIE » est le seul groupe **xérique-mésique** et il a une nette préférence pour les sites de régime hydrique plus sec (classes de drainage 10 et 20). Le groupe est de richesse relative moyenne en raison de tous ses indices qui correspondent à une valeur moyenne par rapport aux données des autres groupes écologiques élémentaires. Le groupe « DIE » a également plus d'affinités pour les dépôts de texture grossière et il est plus abondant dans les forêts perturbées où le couvert est dominé par les feuillus intolérants (PET, PEG, BOP), plus fréquent dans la région 3a-S.

Les groupes « PLS » et « ERP » sont tous les 2 classés mésiques, mais ont des comportements différents. Le groupe « PLS » présente un indice « FA » élevé surtout sur les sites secs (classes de drainage 10 et 16), mais aussi sur les sites humides (classes de drainage 50 et 60), tandis que le groupe « ERP » est plus lié au site de drainage bon à modérément bon (classes 20, 21 et 30). Le groupe « PLS » est de richesse relative pauvre et comme pour les groupes à éricacées, ils préfèrent les dépôts de texture grossière, mais également les sols organiques. Il est surtout lié au couvert résineux de faible densité, composé d'épinettes rouges sur les milieux plus secs et d'épinettes noires ou de thuyas sur les milieux plus humides.

Le groupe « ERP » est de richesse relative moyenne, surtout à cause de son affinité avec les humus plus riches de pH plus élevé et avec les sites ayant une plus longue pente arrière. Il préfère les sites où le sol est très mince ou couvert de till plus ou moins épais, sous couvert feuillu composé le plus souvent de hêtre et d'érable à sucre. Contrairement au groupe « PLS », le groupe « ERP » est plus fréquent dans les sous-régions méridionales 3b-M et 3a-M.

Les groupes **mésiques-subhydriques** « CLB », « ERE » et « VIL » montrent une préférence pour les drainages variant entre les classes 20 et 41. Le groupe « CLB » est aussi lié au drainage de classe 10, ce qui en fait un des seuls groupes qualifiés « d'ubiquiste », qui signifie qu'il n'a pas réellement de préférence. Le groupe est de richesse relative moyenne et aucun de ses indices (pH, humus, "seepage", pente arrière et richesse floristique) ne présente de tendance marquée. Le groupe est toutefois lié aux sites couverts de dépôts de texture grossière, aux humus de type mor plutôt acide et au couvert mélangé dominé par le pin blanc, l'épinette rouge et les feuillus intolérants, un peu plus fréquents dans les sous-régions 3a-S et 3b-T.

Les groupes « ERE » et « VIL » se ressemblent sous plusieurs points. Ils sont tous les deux de richesse relative moyenne, le groupe « VIL » ayant un indice légèrement plus élevé que le groupe « ERE ». Le groupe « VIL » préfère les sites couverts de dépôts de till et d'humus de type moder sous couvert feuillu dominé par le bouleau jaune, l'érable à sucre et le hêtre. Le groupe « ERE » est lié autant au dépôt de texture grossière que de texture moyenne et préfère les couverts mélangés feuillus ou feuillus, où le frêne noir, le bouleau jaune et les feuillus intolérants (ERR, PET, BOP) forment des peuplements de forte densité.

Les groupes subhydriques « OXM », « TIC », « RUP » et « RUI » sont les plus nombreux dans le sous-domaine. Ces groupes sont fortement associés aux classes de drainage 31, 40 et 41. Le groupe « OXM » est le seul groupe subhydrique classé pauvre en terme de richesse relative et montre une préférence pour les dépôts fluvioglaciaires, ainsi que pour les dépôts organiques. Il est associé aux couverts mélangés résineux et résineux dominés par le frêne noir, l'épinette noire ainsi que le thuya et il est plus fréquent dans la sous-région 3a-S.

Les groupes «RUI», «RUP» et «TIC» sont dans l'ordre, les trois groupes écologiques élémentaires qui présentent les indices de richesse les plus élevée du sous-domaine. Le groupe «RUI» présente un indice d'humus exceptionnellement élevé, parce qu'il occupe souvent des endroits perturbés où il est impossible de noter le type d'humus qui était présent avant la perturbation. En analysant les indices des autres variables, on se rend compte que le groupe «RUI» devrait avoir un indice de richesse relative moins élevé et se situer entre le groupe «VIL» et le groupe «GRS». Le groupe «RUI» affectionne particulièrement les sites couverts de dépôts de texture grossière et est très lié, au site perturbé et aux friches où le couvert est le plus souvent arbustif et de très faible densité.

Les groupes « RUP » et « TIC » présentent des indices de valeur relativement égale. Le groupe « RUP » se distingue par des indices de pH et de richesse floristique plus élevés. Il est par contre lié aux sols organiques et aux dépôts de

till de même qu'au couvert mélangé feuillu composé de frênes noirs, de bouleaux jaunes et de thuyas. Le groupe « TIC » pour sa part, montre des indices de "seepage", de pente arrière et d'humus très élevés. Le groupe préfère les dépôts de till de texture assez fine et les sols organiques sous couvert feuillu dominé par le frêne noir, le bouleau jaune et le thuya.

Finalement, les groupes **hydriques** « SPS », « AUR » et « GRS » se distinguent par leur forte association aux conditions de mauvais drainage (classes 50 et 60). Le groupe « SPS » est le plus pauvre de tous les groupes écologiques élémentaires du sous-domaine. Il est très fortement lié au sol organique épais et acide et au couvert arbustif résineux composés de peuplements d'épinettes noires, de thuyas, d'épinettes rouges et de frênes noirs, de faible densité et plus fréquent dans la région 3a-S.

Les groupes « AUR » et « GRS » sont de richesse relative moyenne. Les deux groupes préfèrent de beaucoup les sols organiques épais, mais également les dépôts glaciolacustres de texture relativement fine. Ils sont tous les deux liés au couvert résineux composé d'épinettes noires, de frênes noirs et de thuyas. Le groupe « GRS » est fortement associé aux friches.

5.2. Groupes d'espèces indicatrices

Les groupes d'espèces indicatrices sont formés d'un assemblage de groupes élémentaires, permettant de réunir l'information des plantes indicatrices de sous-bois les plus importantes et d'attribuer à chacun des relevés ou à chacun des peuplements visités sur le terrain, une image synthèse de cette végétation.

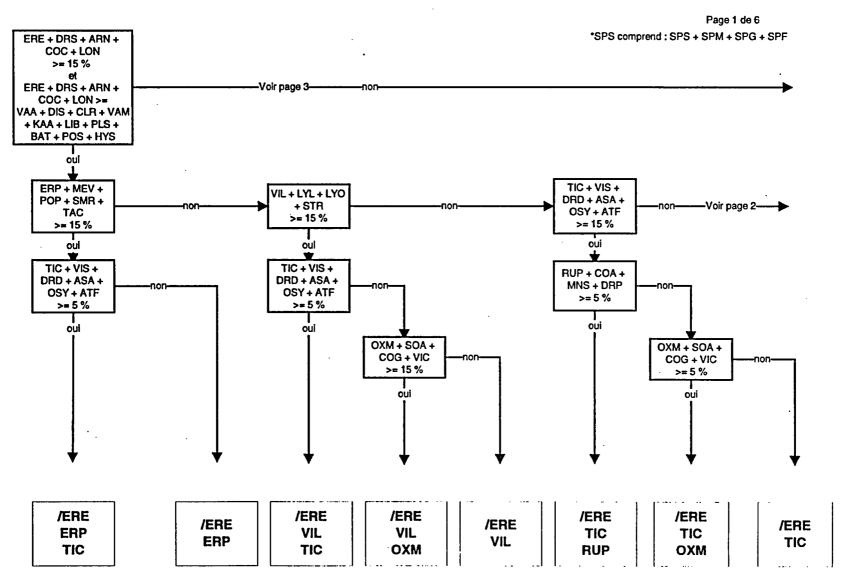
5.2.1. Détermination et reconnaissance des groupes d'espèces indicatrices

Les groupes d'espèces indicatrices sont formés à partir de l'addition de recouvrement de chacun des groupes élémentaires que l'on trouve dans un relevé. Sur le terrain, on rencontre une multitude de combinaisons de groupes élémentaires. L'analyse des caractéristiques écologiques des combinaisons les plus fréquentes (minimum 10 relevés), nous permet de regrouper celles ayant la même signification. On obtient finalement un nombre restreint de groupes d'espèces indicatrices ayant chacun une signature propre.

On fixe un seuil minimum de recouvrement pour faire ressortir les relations entre les conditions du milieu et la végétation. Par exemple, pour obtenir un groupe d'espèces indicatrices à érable à épis (ERE, ERE VIL, etc.), on doit obtenir un recouvrement minimum de 15 % de toutes les espèces combinées du groupe « ERE ». Dans ce cas, c'est à partir de ce seuil que l'on considère que les relations entre le milieu et la végétation sont les mieux exprimées.

En fixant ces seuils minimaux, on élabore une clé informatique (figure 5.2) des groupes d'espèces indicatrices, qui, une fois appliquée à la base de données de l'inventaire, permet d'assigner un groupe d'espèces à chacun des relevés.

5.2.2. Présentation des groupes d'espèces indicatrices


Pour le territoire du sous-domaine de l'érablière à bouleau jaune de l'ouest, nous avons retenu 44 groupes d'espèces indicatrices, qui vont nous permettre de décrire la composition de la végétation du sous-bois.

Le tableau 5.8 montre les préférences écologiques des groupes d'espèces indicatrices du sous-domaine qui sont présentées par ordre de régime hydrique (du plus sec au plus humide) et par ordre de richesse relative (du plus pauvre au plus riche). Le régime hydrique provient de l'application de la clé des régimes hydriques (annexe 2) tandis que la richesse relative est présentée au tableau 5.9. Le tableau 5.10 expose, quant à lui, la classification des groupes d'espèces indicatrices en fonction de la richesse relative, du régime hydrique, des perturbations ou des origines et des essences forestières. La richesse relative est le résultat de l'analyse des quatre variables les plus significatives soit le "seepage", (tableau 5.11), la pente arrière (tableau 5.12), le type d'humus (tableau 5.13) et la richesse floristique (tableau 5.14). Le tableau 5.15 décrit la répartition de ces groupes

Le tableau 5.1 présente la répartition des groupes d'espèces indicatrices par sous-région écologique. Sur les 2 047 relevés, 72 d'entre eux n'ont pu se voir assigner un groupe d'espèces, parce qu'ils n'avaient pas un recouvrement suffisant. Les groupes « VAA OXM » (2 relevés) et « PLS SPS » (1 relevé) étaient trop peu fréquents pour se voir attribuer une richesse relative. Pour les 1 975 relevés restants, on observe que 67 % d'entre eux supportent un groupe d'espèces indicatrices de richesse relative moyenne. On remarque également que près de 50 % des groupes pauvres se trouvent dans la sous-région 3a-S, surtout à cause des conditions climatiques moins favorables de ce territoire situé plus au nord. Les groupes très riches sont plus fréquents dans la sous-région 3b-T, probablement à cause de la plus grande abondance des dépôts de till épais (1A), des dépôts lacustres (4GA) et des dépôts marins (5A), que l'on trouve sur ce territoire.

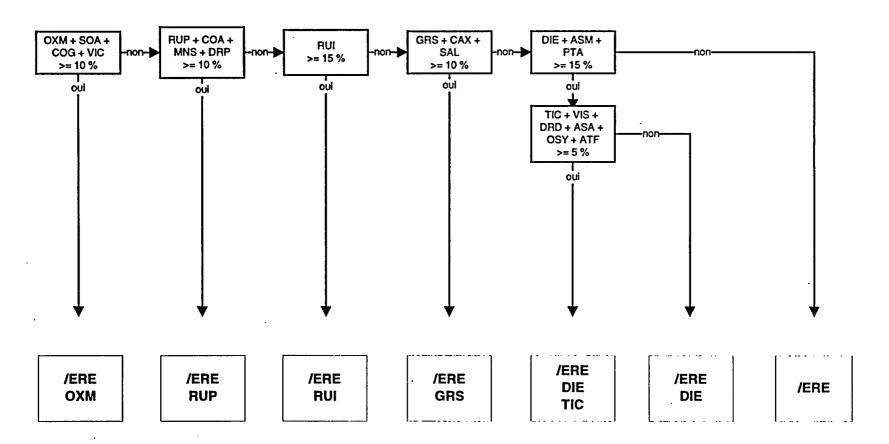

Comme la méthode de ce calcul des indices (fréquence, abondance) n'est pas la même pour les groupes d'espèces indicatrices que pour les groupes écologiques élémentaires, il peut y avoir des différences entre la description de deux types de groupe portant le même nom (exemple : le groupe élémentaire et le groupe d'espèces indicatrices « ERE »).

Figure 5.2 : Clé d'identification des groupes d'espèces indicatrices du sous-domaine de l'érablière à bouleau jaune de l'ouest (régions écologiques 3a et 3b)

Page 2 de 6

*SPS comprend: SPS + SPM + SPG + SPF

Page 3 de 6

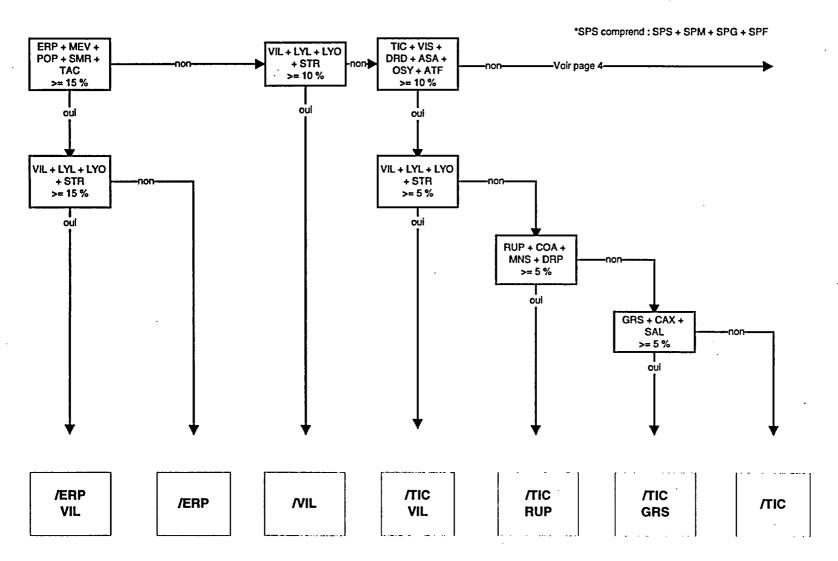


Figure 5.2 (suite)

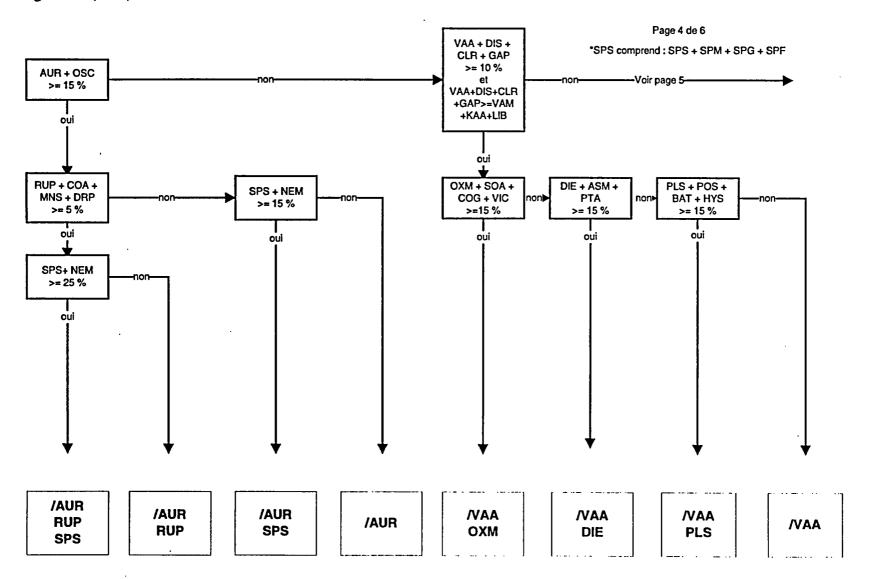
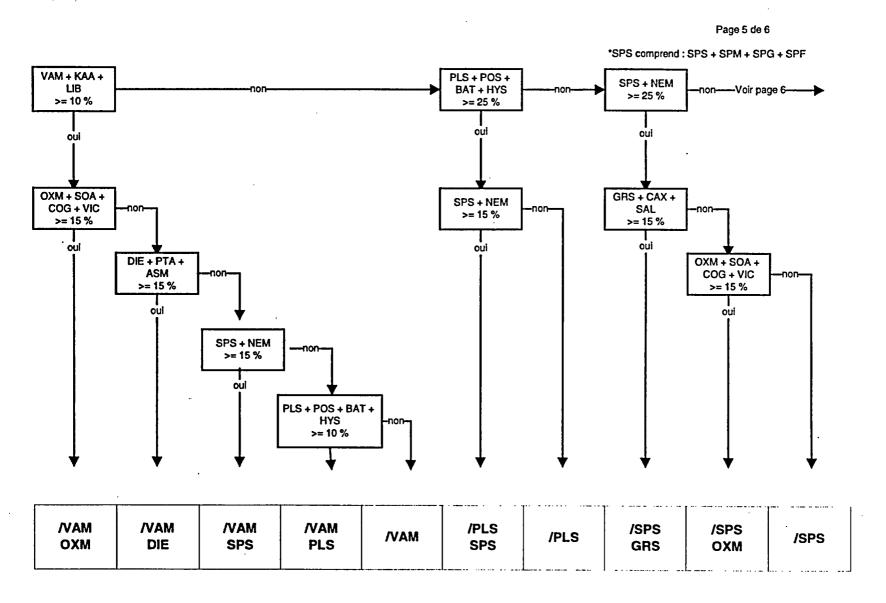



Figure 5.2 (suite)

Page 6 de 6

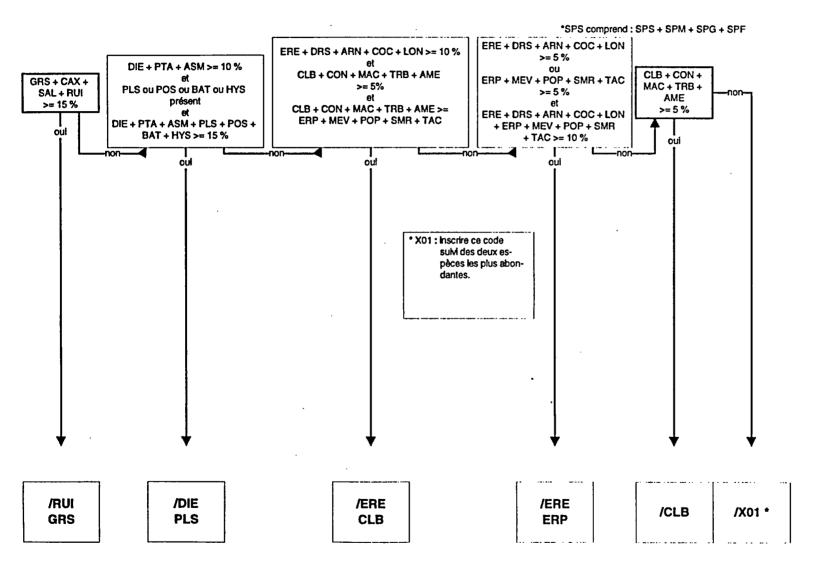


Tableau 5.8 : Préférences des groupes d'espèces indicatrices du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

GROUPE D'ESPÈCES INDICATRICES	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION (2)	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
VAA (0,54%) ⁽²⁾	Vaccinium angustifolia (VAA) Dicranum sp. (DIS) Cladina rangiferina (CLR) Gaultheria procumbens (GAP)	RÉGIME HYDRIQUE Xérique ⁽⁴⁾ POSITION TOPOGRAPHIQUE Mi-pente, sommet Mi-versant, haut versant Pente: 9 à 15%, 16 à 30% DÉPÔT Till (1A), Roc (R) TEXTURE DE L'HORIZON "B" Moyenne, grossière ÉPAISSEUR D'HUMUS 6 à 10"cm, 1 à 5 cm ALTITUDE 250 à 349 m*, 350 à 359 m	RICHESSE RELATIVE Pauvre TYPE D'HUMUS Mor* PH DE L'HUMUS >4,2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Sans préférence ESPÈCE DOMINANTE PIB, PET, EPR, BOP DENSITÉ A*, C	ORIGINE Brulis* PERTURBATION Sans préférence	SOUS-RÉGION 3a-S 3b-M
VAM (0,54%)	Vaccinium myrtilloides (VAM) Kalmia angustifolia (KAA) Linea borealis (LIB)	RÉGIME HYDRIQUE Xárique POSITION TOPOGRAPHIQUE Hauf de pente, mi-pente Moyen versant*, bas versant Pente:9 à 15%, 31 à 50% DÉPÔT Roc (R)* TEXTURE DE L'HORIZON "B" Ne s'applique pas sur R ÉPAISSEUR D'HUMUS 1 à 5 cm, 6 à 10 cm ALTITUDE 350 à 449 m"	RICHESSE RELATIVE Pauvre TYPE D'HUMUS Mor* PH DE L'HUMUS >4,2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Sans préférence ESPÈCE DOMINANTE EPN, SAB, PIB, BOP, CHR DENSITÉ C, B	ORIGINE Non décelable Bruis PERTURBATION Sans préférence	SOUS-RÉGION 3a-S*
VAA DIE (1,86%)	Vaccinium angustifolia (VAA) Dicranum sp. (DIS) Cladina rangiferina (CLR) Gaultheria procumbens (GAP) Diervilla lonicera (DIE) Aster macrophyllus (ASM) Pteridium aquilinum (PTA)	RÉGIME HYDRIQUE Xérique-mésique POSITION TOPOGRAPHIQUE Mi-pente: 9 à15%, 16 à 30% DÉPÔT Roc (R), till (1A) TEXTURE DE L'HORIZON "B" Moyenne", grossière ÉPAISSEUR D'HUMUS 1 à 5 cm, 6 à 10 cm ALTITUDE 350 à 449 m*, 250 à 349 m	RICHESSE RELATIVE Indéterminée TYPE D'HUMUS Mor*, moder PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE Pauvre	TYPE PHYSIONOMIQUE Arborescent TYPE DE COUVERT Sans préérence ESPÈCE DOMINANTE BOP, EPN DENSITÉ Sans préférence	ORIGINE Brulis* PERTURBATION Épidémie légère	SOUS-RÉGION 3a-S

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPĒCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION (2)	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
/AM DIE 1,22%)	Vaccinium myrtilloides (VAM) Kalmia angustifolia (KAA) Linea borealis (UB) Diewilla lonicera (DIE) Aster macrophyllus (ASM) Pteridium aquilinum (PTA)	RÉGIME HYDRIQUE Xérique-mésique POSITION TOPOGRAPHIQUE Terrain plat, mi-pente Bas versant*, mi-versant Pents: 0 à 3%, 9 à 15% DÉPÔT TIII (1A), fluvloglaciaire (2B), roc (R) TEXTURE DE L'HORIZON "B" Moyenne*, grossière ÉPAISSEUR D'HUMUS 1 à 5 cm, 6 à 10 cm ALTITUDE 350 à 449 m*, 250 à 349 m	Pauve TYPE D'HUMUS Mor** PH DE L'HUMUS > 4.2 RICHESSE FLORISTIQUE	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Sans préférence ESPÈCE DOMINANTE PIB, BOP, EPN, EPR, ERR DENSITÉ C, B	ORIGINE Brulis* PERTURBATION Coupe partielle	SOUS-RÉGION 3a-S* 3a-T
ERE GRS (0,64%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comulis (COC) Lonicera canadensis (LON) Graminée sp. (GRS) Carex sp. (CAX) Salix sp. (SAL)	RÉGIME HYDRIQUE Xárique-mésique POSITION TOPOGRAPHIQUE Haut de pente Mi-versant*, bas versant Pente: 16 à 30%, 0 à 3% DÉPÓT Till (1A)* TEXTURE DE L'HORIZON "B" Grossière*, moyenne ÉPAISSEUR D'HUMUS 6 à 10 cm*, 1 à 5 cm AL TITUDE 350 à 449 m*, 250 à 349 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Mor', moder PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE RICHE	TYPE PHYSIONOMIQUE Arborescent* TYPE DE COUVERT Feuillu*, mélangé-feuillu ESPÈCE DOMINANTE ERS DENSITÉ A	ORIGINE Brulis Coupe totale PERTURBATION Coupe partielle	SOUS-RÉGION 3a-M
ERE (13,39%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON)	RÉGIME HYDRIQUE Xérique-mésique POSITION TOPOGRAPHIQUE Mi-pente Mi-versant, bas versant Pente: 9 à 15%, 16 à 30% DÉPÔT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne", Grossière ÉPAISSEUR D'HUMUS 6 à 10 cm, 1 à 5 cm ALTITUDE 350 à 449 m, 250 à 349 m	RICHESSE RELATIVE Mayenne TYPE D'HUMUS Moder*, mor PH DE L'HUMUS > 4,2 RICHESSE FLORISTIQUE Mayenne	TYPE PHYSIONOMIQUE Arborescent TYPE DE COUVERT Feuillu, feuillu-mélangé ESPÈCE DOMINANTE ERS DENSITÉ A, B	ORIGINE Non-décelable PERTURBATION Sans préférence	SOUS-RÉGION 3a-T 3b-T

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPĒCES	VARIABLES PHYSIQUES(2)	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
ERE DIE (5,13%)	Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Diervilla lonicera (DIE)	RÉGIME HYDRIQUE Xérique-mésique POSITION TOPOGRAPHIQUE Mi-pente* Moyen versant, bas versant Pente: 9 à15%, 16 à 30% DÉPÔT Till(1A)*** TEXTURE DE L'HORIZON "B" Moyenne*, grossière ÉPAISSEUR D'HUMUS 1 à 5 cm², 6 à10 cm ALTITUDE 250 à 349 m², 350 à 449 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Mor*, moder PH DE L'HUMUS >4,2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Mélangé-feuillu, feuillu ESPÈCE DOMINANTE BOP DENSITÉ A, B	ORIGINE Brulis* Non décelable PERTURBATION Épidémie légère	SOUS-RÉGION 3a-S 3a-T
ERE ERP (17,00%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Acer pensylvanicum (ERP) Medeola virginiana (MEV) Polygonatum pubescens (POP) Smilacina racemosa (SMR) Taxus canadensis (TAC)	RÉGIME HYDRIQUE Xérique-mésique POSITION TOPOGRAPHIQUE Mi-pente, haut de pente Moyen versant*, haut versant Pente: 9 à 15%, 16 à 30% DÉPÔT TIII (1A)*** TEXTURE DE L'HORIZON "B" Moyenne** ÉPAISSEUR D'HUMUS 6 à 10 cm, 11 à 20 cm ALTITUDE 350 à 449 m*	RICHESSE RELATIVE Mayenne TYPE D'HUMUS Moder', mor PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Mayenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu* ESPÈCE DOMINANTE ERS DENSITÉ A*, B	ORIGINE Non décelable PERTURBATION Coupe partielle	SOUS-RÉGION 3a-T
ERP VIL (1,91%)	Acer pensylvanicum (ERP) Medeola virginiana (MEV) Polygonatum pubescens (POP) Smilacina racemosa (SMR) Taxus canadensis (TAC) Viburnum alnifolium (VIL) Lycopodium lucidulum (LYL) Lycopodium obscurum (LYO) Streptopus roseus (STR)	RÉGIME HYDRIQUE Xárique-mésique POSITION TOPOGRAPHIQUE Mi-pente, sommet Moyen versant*, haut versant Pente:4 à 0%, 16 à 30% DÉPÔT TIII (103*** TEXTURE DE L'HORIZON "B" Moyenne*** ÉPAISSEUR D'HUMUS 6 à 10 cm, 1 à 5 cm ALTITUDE 350 à449 m*, 450 à 549 m	RICHESSE RELATIVE Très riche TYPE D'HUMUS Moder** PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Pauvre	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT feuillu* ESPÈCE DOMINANTE ERS DENSITÉ A	ORIGINE Non décelable PERTURBATION Sans préférence	SOUS-RÉGION 3b-T

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER(2)	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
ERE CL.B (3,03%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Clintonia borealis (CLB) Comus canadensis (CON) Maianthemum canadense (MAC) Trientalis borealis (TRB) Amelanchier sp. (AME)	RÉGIME HYDRIQUE Xérique-mésique POSITION TOPOGRAPHIQUE Mi-pente, haut de pente Moyen versant*, bas versant Pente: 4 à 8%, 9 à 15% DÉPÔT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne*, grossière ÉPAIS SEUR D'HUMUS 6 à 10 cm*, 1 à 5 cm ALTITUDE 350 à 449 m, 250 à 349 m	RICHESSE RELATIVE Moyenne TYPE DHUMUS Mor*, moder PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent* TYPE DE COUVERT Mélangé-feuillu, feuillu ESPÈCE DOMINANTE SAB, ERR DENSITÉ B A	ORIGINE Non décelable* Brulis PERTURBATION Sans préférence	SOUS-RÉGION 3b-T
C1B (254%)	Amelanchier sp. (AME)	RÉGIME HYDRIQUE Xérique-mésique POSITION TOPOGRAPHIQUE Sommet, mi-pente Mi-versant*, bas versant Pente: 4 à B%, 9 à 15% DÉPÔT TIR (1A)*, roc (R) TEXTURE DE L'HORIZON "B" Moyenne*, grossière ÉPALSSEUR D'HUMUS 6 à 10 cm*, 1 à 5 cm ALTITUDE 300 à 399 m*, 200 à 399 m	RICHESSE RELATIVE Paume TYPE DHUMUS Mor* PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Paume	TYPE PHYSIONOMIQUE Authorescent** TYPE DE COUVERT Résineux, Mélangé-résineux ESPÈCE DOMINANTE SAB DENSITÉ A, B	ORIGINE Brulis Non décelable PERTURBATION Épidémie légère	SOUS-RÉGION 3a-S
ERP (8,79%)	Smilacina racemosa (SMR) Taxus canadensis (TAC)	RÉGIME HYDRIQUE Xérique- mésique POSITION TOPOGRAPHIQUE Mispente, haut de pente Moyen versant, haut versant Pente: 16 à 30%, 9 à 15% DÉPÔT TIII (1A)" TEXTURE DE L'HORIZON "B" Moyenne" ÉPAISSEUR D'HUMUS 6 à 10 cm, 1 à 5 cm ALTITUDE 300 à 399 m°, 200 à 299 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Moder, mor PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu* ESPÈCE DOMINANTE ERS DENSITÉ A*, B	ORIGINE Non décelable Brulis PERTURBATION Sans perturbation	SOUS-RÉGION 3b-M

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME HUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
ERE DIE TIC (0,90%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Dierrilla lonicera (DIE) Aster macrophyllus (ASM) Pteridium aquilinum (PTA) Tiarella cordifolia (TIC) Viola sp. (MS) Dryopteris disjuncta (DRD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femina (ATF)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mipente Moyen versant, haut versant Pente: 9 à 15%, 4 à 8% DÉPÔT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne, grossière ÉPAISSEUR D'HUMUS 1 à 5 cm*, 6 à 10 cm ALTITUDE 250 à 349 m*, 350 à 449 m	RICHESSE RELATIVE Mayenne TYPE D'HUMUS Moder*, mor PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent TYPE DE COUVERT Feuillu*, Mélangé-feuillu ESPÈCE DOMINANTE BOP, PET, ERS DENSITÉ A, B	ORIGINE Non décelable* PERTURBATION Coupe partielle	SOUS-RÉGION 35-M
DIE PLS (1,95%)	Diervilla Ionicera (DIE) Aster macrophyllus (ASM) Pteridium aquilinum (PTA) Pleurozium schreberi (PLS) Polytrichum sp. (POS) Bazzania trilobata (BAT) Hylocomium splendens (HYS)	RÉGIME HYDRIQUE Médique POSITION TOPOGRAPHIQUE Mi-pente, haut de pente Mi-versant, bas versant Pente: 9 à 15% DÉPÔT TIR (1A)* TEXTURE DE L'HORIZON "B" Moyenne", grossière EPAISSEUR D'HUMUS 1 à 5 cm", 6 à 10 cm ALTITUDE 350 à 449 m", 250 à 349 m	RICHESSE RELATIVE Pauvre TYPE D'HUMUS Mor** PH DE L'HUMUS > 4.2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Sans préérence ESPÈCE DOMINANTE BOP DENSITÉ A, C, B	ORIGINE Brulis* PERTURBATION Sans préférence	SOUS-RÉGION 32-S
	Vaccinium myrtitloides (VAM) Kalmia angustifolia (KAA) Linea borealis (LIB) Pleurozium schreberi (PLS) Polytrichum sp. (POS) Bezzania trilobata (BAT) Hylocomium splendens (HYS)	RÉGIME HYDRIQUE Másique POSITION TOPOGRAPHIQUE Sommet, mi-pente Bas versant*, mi-versant Pente: 4 & 8%, 9 & 15%, 0 & 3% DÉPÔT TIR (1A)*, roc (R) TEXTURE DE L'HORIZON "B" Moyenne*, grossière EPAISSEUR D'HUMUS 6 & 10 cm*, 11 & 20 cm ALTITUDE 250 & 349 m*, 350 & 449 m*	RICHESSE RELATIVE Pauma TYPE D'HUMUS Mor** PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE Pauma	TYPE DE COUVERT Résineux*, mélangé- résineux ESPÈCE DOMINANTE	ORIGINE Non décelable Brufis PERTURBATION Épidémie légère™	SOUS-RÉGION 3a-S° 3c-T 3b-T

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPĒCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION (2)	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
TIC (0,34%)	Tiarella cordifolia (TIC) Viola sp. (VIS) Dryopteria disjuncta (ORD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femina (ATF)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mi-penta, bas de pente Moyen versant*, bas versant Pente: 0 à 3%, 9 à 15% DÉPÔT TIII (1A)*, roc (R) TEXTURE DE L'HORIZON "B" Moyenne" ÉPAISSEUR D'HUMUS 6 à 10 cm*, 1 à 5 cm ALTITUDE 250 à 349 m*, 350 à 449 m	RICHESSE RELATIVE Riche Riche TYPE D'HUMUS Moder*, mor PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent* TYPE DE COUVERT Feuillu*, Mélangé-résineux ESPÈCE DOMINANTE ERS*, THO DENSTTÉ A, B, C	ORIGINE Non décelable PERTURBATION Coupe partielle	SOUS-RÉGION 35-M* 33-T
ERE RUI (1,03%)	Acer spicatum (ERE) Dryopteris spinulose (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Rubus ideaus (RUI)	RÉGIME HYDRIQUE Mésique Position topographique Mi-pente Bas versant*, moyen versant Pente: 9 à 15%, 16 à 30% 0EPÔT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne, grossière EPAISSEUR D'HUMUS 1 à 5 cm* ALTITUDE 350 à 449 m*, 250 à 349 m	RICHESSE RELATIVE Riche TYPE DHUMUS Moder* PH DE L'HUMUS > 4.2 RICHESSE FLORISTIQUE Pauvre	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu* ESPÈCE DOMINANTE ERS DENSITÉ C, B	ORIGINE Coupe totale Non décelable PERTURBATION Sans préférence	SOUS-RÉGION 32-S
ERE VIL OXM (0,33%)	Acer spicetum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Viburnum alnifolium (VIL) Lycopodium lucidulum (LYL) Lycopodium obscurum (LYO) Streptopus roseus (STR) Oxalis montana (OXM) Sorbus americana (SOA) Coptis groenlandica (COG) Viburnum cassinoides (VIC)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mipente* Moyen versant*, bas versant Pente: 4 à 8% DÉPÔT TILI (1A)** TEXTURE DE L'HORIZON "B" Moyenne* ÉPAISSEUR D'HUMUS 1 à 5 cm*, 6 à 10 cm ALTITUDE 350 à 449 m*	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Moder, mor PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu, mélangé-feuillu ESPÈCE DOMINANTE BOJ, ERR DENSITÉ A, C	ORIGINE Non décelable PERTURBATION Sans préférence	SOUS-RÉGION 3a-T

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPĒCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
	Dicranum sp. (DIS) Cladina rangiferina (CLR) Gaultheria procumbens (GAP) Pleurozium schreberi (PLS) Polytrichum sp. (POS) Bazzania trilobata (BAT) Hylocomium splendens (HYS)	RÉGIME HYDRIQUE Mésique POSTTION TOPOGRAPHIQUE Terrain plat Bas versant*, moyen versant Pente: 0 à 3%, 9 à 15% DÉPÔT Roc (R), till (1A), Suvioglaciaire (2BE) TEXTURE DE L'HORIZON "B" Grossière" ÉPAISSEUR D'HUMUS 6 à 10 cm ALTITUDE 250 à 349 m**		TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Résineux*, mélangé-résineux ESPÈCE DOMINANTE PIG, EPN, EPR, DENSITÉ C*, B	ORIGINE Brulis* PERTURBATION Coupe partielle	SOUS RÉGION 3b-T
RUI GRS (1,0%)	Rubus ideaus (RUI) Graminée sp. (GRS) Carex sp. (CAX) Salix sp. (SAL)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mi-pente Bas versant*, moyen versant Pente: 0 à 3%, 9 à 15% DÉPÔT Till (1A) TEXTURE DE L'HORIZON "B" Moyenne, grossière ÉPAISSEUR D'HUMUS 6 à 10 cm, 1 à 5 cm ALTITUDE 250 à 349 m, 350 à 449 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Moder PH DE L'HUMUS > 4.2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu ESPÈCE DOMINANTE Sans préférence DENSITÉ B, C	ORIGINE Non décelable PERTURBATION Sans préférence	SOUS RÉGION 35-M 36-T
ERE ERP TIC (2,44%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Acer pensylvanicum (ERP) Medeola virginiana (MEV) Polygonatum pubescens (POP) Smilacina racemosa (SMR) Taxus canadensis (TAC) Tiarella cordifolia (TIC) Viola sp (VIS) Dryopteris disjuncta (DRD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femina (ATF)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mépente Moyen versant, Haut versant Pente: 9 415% DÉPÔT TH (1A)*** TEXTURE DE L'HORIZON "B" Moyenne" ÉPAISSEUR D'HUMUS 1 à 6 cm", 6 à 10 cm ALTITUDE 350 à 449 m	RICHESSE RELATIVE RICHE TYPE D'HUMUS Moder', mor PH DE L'HUMUS < 42 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent* TYPE DE COUVERT Feuillu*, mélangé-feuillu ESPÈCE DOMINANTE ERS DENSITÉ A*, B	ORIGINE Non décelable PERTURBATION Coupe partielle	SOUS RÉGION 35 M

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPĒCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION (2)	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
VIL (2,53%)	Viburnum sinifolium (VIL) Lycopodium lucidulum (LYL) Lycopodium obscurum (LYO) Streptopus roseus (STR)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mi-pente* Moyen versant* Pente: 9 à 15%, 16 à 30% DÉPÔT I'ill (1A)** TEXTURE DE L'HORIZON "B" Moyenne** ÉPAISSEUR D'HUMUS 6 à 10 cm*, 1 à 5 cm ALTITUDE 350 à 449 m*, 250 à 349 m	RICHESSE RELATIVE Riche TYPE D'HUMUS Moder*, mor PH DE L'HUMUS < 42 RICHESSE FLORISTIQUE Mayenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu* ESPÈCE DOMINANTE ERS* DENSITÉ A*, B	ORIGINE Non décelable PERTURBATION Coupe partielle	SOUS-RÉGION 3b-T 3b-M
ERE TIC (0,59%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera cenadensis (LON) Tierella cordifolia (TIC) Viola sp. (VIS) Dryopteris disjuncta (DRD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femina (ATF)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mi-pente", bas de pente Moyen versant", bas versant Pente: 9 à15%, 16 à 30%, 4 à 8% DÉPÔT TITI (1A)" TEXTURE DE L'HORIZON "B" Moyenne", grossière" ÉPAISSEUR D'HUMUS 1 à 6 cm, 6 à 10 cm ALTITUDE 250 à 349 m*, 350 à 449 m	RICHESSE RELATIVE RICHE RICHE TYPE D'HUMUS Moder*, mor PH DE L'HUMUS > 42 RICHESSE FLORISTIQUE RICHE	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu* ESPÈCE DOMINANTE BOP, ERS DENSITÉ B*, A	ORIGINE Non décelable PERTURBATION Sans préférence	SOUS-RÉGION 3b-T 3b-M
ERE VIL (4,54%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Viburnum alnifolium (ML) Lycopodium lucidulum (LYL) Lycopodium obscurum (LYO) Streptopus roseus (STR)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mi-pente* Gas versant, moyen versant Pente: 9 à 15%, 4 à 8% DÉPÔT TIR (1A)*** TEXTURE DE L'HORIZON "B" Moyenne* ÉPAISSEUR D'HUMUS 1 à 5 cm, 6 à 10 cm ALTITUDE 350 à 449 m°, 250 à 349 m	RICHESSE RELATIVE Riche Riche Riche TYPE D'HUMUS Moder** PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu**, Feuillu mélangé ESPÈCE DOMINANTE ERS DENSITÉ A*, B	ORIGINE Non décelable PERTURBATION Sans préférence	SOUS-RÉGION 3a-T

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
ERE RUP (0,83%)	Acer spicatum (ERE) Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Rubus pubescens Comus alternifolia Mnium sp. Dryopteris phegopteris	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mi-pente* Bas versant*, moyen versant Pente: 9 à 15%, 4 à 5% DÉPÔT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne" ÉPAISSEUR D'HUMUS 1 à 5 cm, 6 à 10 cm AL TITUDE 250 à 349 m*, 350 à 449 m	RICHESSE RELATIVE Riche TYPE D'HUMUS Moder, mor PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu, mélangé-feuillu ESPÈCE DOMINANTE BOJ DENSITÉ C	ORIGINE Non décelable PERTURBATION Sans préférence	SOUS-RÉGION 3b-M
TIC GRS (19%)	Tierelle cordifolia (TIC) Viola sp. (VIS) Dryopteris disjuncta (DRD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femine (ATF) Graminée sp. (GRS) Carex sp. (CAX) Selix sp. (SAL)	RÉGIME HYDRIQUE Mésique POSITION TOPOGRAPHIQUE Mipente Moyen versant*, bas versant Pente: 0 à 3%, 4 à 8%, 9 à 15% DÉPÔT Till (1A)*** TEXTURE DE L'HORIZON "B" Moyenne** ÉPAISSEUR D'HUMUS 1 à 5 cm, 6 à 10 cm ALTITUDE 350 à 449 m, 250 à 349 m	RICHESSE RELATIVE RICHE RICHE TYPE D'HUMUS Moder, mor PH DE L'HUMUS > 4.2 RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu*, mélangé-résineux ESPÈCE DOMINANTE ERS, BOP, SAB DENSITÉ B*	ORIGINE Coupe totale Non décelable PERTURBATION Coupe partielle	SOUS-RÉGION 3b-T 3b-M
VAM OXIII (1,03%)	Vaccinium myrtilloides (VAM) Kalmia angustifolia (KAA) Linea borealis (LIB) Oxalis montana (OXM) Sorbus americana (SOA) Coptis groenlandica (COG) Viburnum cassinoides (VIC)	RÉGIME HYDRIQUE Mésique-subhydrique POSITION TOPOGRAPHIQUE Terrain plat, bas de pente Bas versant*, mi-versant Pents: 4 à 6%*, 0 à 3 % DÉPÔT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne, grossière ÉPAISSEUR D'HUMUS 11 à 20 cm, 6 à 10 cm, 1 à 5 cm ALTITUDE 350 à 449 m*, 250 à 349 m	RICHESSE RELATIVE Pauwe TYPE D'HUMUS Mor** PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Résineux, mélangé-résineux ESPÈCE DOMINANTE EPN* DENSITÉ C, B	ORIGINE Non décelable* PERTURBATION Épidémie légère	SOUS-RÉGION 3a-T 3a-S

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
AUR (0,58%)	Ainus rugosa (AUR) Osmunda cinnamomea (OSC)	RÉGIME HYDRIQUE Mésique-subhydrique POSITION TOPOGRAPHIQUE Bas de pente Moyen versant*, bas versant Pente: 0 à 3%, 4 à B% 0ÉPÔT TIR (1A)*, sol organique (7T) TEXTURE DE L'HORIZON "B" Ne s'applique pas pour (7T), moyenne EPAISSEUR D'HUMUS > 41 cm, 6 à 10 cm ALTITUDE 350 à 449 m**	RICHESSE RELATIVE Pauve TYPE D'HUMUS Mor, sol organique PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Mélangé-feuillu, résineux ESPÈCE DOMINANTE ERR, EPN DENSITÉ B, A	ORIGINE Non décelable* Bruis PERTURBATION Épidémie légère*	SOUS-RÉGION 3+5*
ERE OXM (8,74%)	Acer spicetum (ERE) Dryopteris spinulosa (DRS) Aratia nudicaulis (ARN) Corylus corruta (COC) Lonicera canadensis (LON) Oxelis montana (OXM) Sorbus americana (SOA) Coptis groenlandica (COG) Vibumum cassinoides (VIC)	RÉGIME HYDRIQUE Mésique subhydrique POSITION TOPOGRAPHIQUE Mi-pents Bes versant*, moyen versant Pents: D à 3%, 4 à 8%, 9 à 15% DÉPÔT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne, grossière ÉPAISSEUR D'HUMUS 6 à 10 cm, 1 à 5 cm ALTITUDE 350 à 449 m*, 250 à 349 m	RICHESSE RELATIVE Mayenne TyPE D'HUMUS Mor', moder PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Métangé-feuillu, feuillu ESPÈCE DOMINANTE BOJ, BOP DENSITÉ A, B, C	ORIGINE Non décelable* Brulis PERTURBATION Épidémie légère	SOUS-RÉGION 3+S 3+T
ERE VIL TIC (3,09%)	Acer spicetum (ERE) Dryopteris epinulose (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Vibumum shiriolium (VIL) Lycopodium lucidulum (LYL) Lycopodium obscurum (LYO) Streptopus roseus (STR) Tiarella cordifolia (TIC) Viola sp (VIS) Dryopteris disjuncta (DRD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femina (ATF)	RÉGIME HYDRIQUE Mésique-subhydrique POSITION TOPOGRAPHIQUE Mi-parite, bas de pente Mi-versant, bas versant Pente: 4 à 8%, 9 à 15% DÉPÔT Tifl (1A)*** TEXTURE DE L'HORIZON "B" Moyenne", grossière ÉPALSSEUR D'HUMUS 6 à 10 cm*, 1 à 5 cm ALTITUDE 250 à 349 m, 350 à 449 m	RICHESSE RELATIVE Très riche Trye D'HUMUS Moder PH DE L'HUMUS > 4 2 RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu*, mélangé-feuillu ESPÈCE DOMINANTE ERS, BOJ DENSITÉ A, B	ORIGINE Non décelable PERTURBATION Sans perturbation	SOUS-RÉGION 3b-T

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION (2)	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
TIC VIL (0,64%)	Tiarella cordifolia (TIC) Viola sp. (VIS) Dryopteris disjuncta (DRD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femina (ATF) Viburnum alnifolium (VIL) Lycopodium lucidulum (LYL) Lycopodium obscurum (LYO) Streptopus roseus (STR)	RÉGIME HYDRIQUE Mésique-subhydrique POSITION TOPOGRAPHIQUE Mi-pente Moyen versant, haut versant Pente: 4 à 8%, 9 à 15% DÉPÓT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne ÉPAISSEUR D'HUMUS 1 à 5 cm ALTITUDE 350 à 449 m°, 250 à 349 m	RICHESSE RELATIVE Très riche TYPE D'HUMUS Moder* PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Feuillu* ESPÈCE DOMINANTE ERS, BOJ, SAB DENSITÉ A*, B	ORIGINE Non décelable Coupe totale PERTURBATION Coupe partielle	SOUS-RÉGION 3b-M* 3b-T
PLS (0,49%)	Pleurozium schreberi (PLS) Polytrichum sp. (POS) Bazzania trilobata (BAT) Hylocomium splendens (HYS)	RÉGIME HYDRIQUE Subhydrique POSITION TOPOGRAPHIQUE Terrain plat*, mi-pente Bas versant*, moyen versant* Pente: 0 à 3%* DÉPÔT Till (1A), fluvioglacière (2B), organique TEXTURE DE L'HORIZON "B" Grossière* ÉPAUSSEUR D'HUMUS 1 à 5 cm, 6 à 10 cm, > 41cm ALTITUDE 250 à 349 m*, 350 à 449 m	RICHESSE RELATIVE Moyenne TYPE D'HUMUS Mor', soi organique PH DE L'HUMUS Sans préférence RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Résineux* ESPÈCE DOMINANTE THO, SAB DENSITÉ C	ORIGINE Non décelable Brulis PERTURBATION Coupe partielle Épidémie légère	SOUS-RÉGION 3b-T* 3b-M
ERE TIC RUP (2,83%)	Acer spicatum (ERE) Dryopteris spirulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Tiarella cordifolia (TIC) Viola sp. (MS) Dryopteris disjuncta (DRD) Aster acumiretus (ASA) Osmunda cinnamomea (OSC) Athyrium filix-femina (ATF) Rubus pubescens Comus alternifolia Minium sp. Dryopteris phegopteris	RÉGIME HYDRIQUE Subhydrique POSITION TOPOGRAPHIQUE Mi-pente, bas de pente Bas versant*, moyen versant Pente: 0 à3%, 4 à 8% DÉPÔT Till (1A)* TEXTURE DE L'HORIZON "B" Moyenne ÉPAISSEUR D'HUMUS 6 à 10 cm, 11 à 20 cm AL TITUDE 250 à 349 m*, 350 à 449 m	RICHESSE RELATIVE RICHE RICHE TYPE D'HUMUS Moder, mor PH DE L'HUMUS > 4.2 RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Mélangé-feuillu, feuillu ESPÈCE DOMINANTE BOJ, FRN DENSITÉ B, A	ORIGINE Non décelable PERTURBATION Épidémie légère Sans préférence	SOUS-RÉGION 3a-S

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION ⁽²⁾	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
ERE TIC OXM (0,59%)	Dryopteris spinulosa (DRS) Aralia nudicaulis (ARN) Corylus comuta (COC) Lonicera canadensis (LON) Tiarella cordifolia (TIC) Viola sp. (VIS) Dryopteris disjuncta (DRD) Aster acuminatus (ASA) Osmunda cinnamomea (OSC) Athynium filix-femina (ATF)	Subhydrique POSITION TOPOGRAPHIQUE Mi-pente, bas de pente	TYPE D'HUMUS Moder, mor PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE	TYPE DE COUVERT Feuillu [™] , mélangé feuillu ESPÈCE DOMINANTE BOJ, FRN	ORIGINE Brulis* Non décelable PERTURBATION Épidémie légère	SOUS-RÉGION 3&S*
SPS GRS (0,54%)	Sphagnum magellanicum (SPM)	POSITION TOPOGRAPHIQUE Terrain plat* Bas versent**	RICHESSE RELATIVE Pauvre TYPE D'HUMUS Sol organique* PH DE L'HUMUS < 4.2 RICHESSE FLORISTIQUE Pauvre	TYPE PHYSIONOMIQUE Arborescent*, arbustif TYPE DE COUVERT Résineux*, mélangé-résineux ESPÈCE DOMINANTE EPN, THO DENSITÉ C, D	ORIGINE Non décelable PERTURBATION Chablis partielle	SOUS-RÉGION 3b-M 3b-T
SPS OXM (0,24)	Sphagnum girgensohnii (SPG) Sphagnum magellanicum (SPM) Sphagnum fuscum (SPF) Sphagnum squarrosum (SPQ) Sphagnum sp. (SPS) Nemopanthus mucronatus (NEM Oxalis montana (OXM) Sorbus americana (SOA) Coptis groenlandica (COG) Viburnum cassinoides (VIC)	POSITION TOPOGRAPHIQUE Terrain plat Bas versant*, moyen versant	RICHESSE RELATIVE Pauvre TYPE DHUMUS Sol organique* PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE Pauvre	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Résineux** ESPÈCE DOMINANTE EPN, THO, SAB, PRU, BOJ DENSITÉ C*, A	ORIGIME Non décelable PERTURBATION Sans préférence	SOUS-RÉGION 3a-S*

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPÈCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER ⁽²⁾	ORIGINE PERTURBATION (2)	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
AUR RUP SPS (0,34%)	Osmunda cinnamornea (OSC) Rubus pubescens Comus alternifolia Minium sp. Dryopteris phegopteris Sphagnum girgensohnii (SPG) Sphagnum magellanicum (SPM) Sphagnum fuscum (SPF)	Ne s'applique pas pour (7T) ÉPAISSEUR D'HUMUS > 41cm	TYPE D'HUMUS Sol organique*, tourbe PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Résineux*, feuillu ESPÈCE DOMINANTE EPN*, THO DENSITÉ B, D	ORIGINE Non décelable PERTURBATION Chablis partiel	SOUS-RÉGION 3b-M 3b-T
VAM SPS (0,64%)	Vaccinium myrtilloides (VAM) Kalmia angustifolia (KAA) Linea borealis (LIB) Sphagnum girgensohnii (SPG) Sphagnum magellanicum (SPM) Sphagnum fuscum (SPF) Sphagnum squarrosum (SPQ) Sphagnum sp. (SPS) Nemopanthus mucronatus (NEM)	DÉPÓT Sol organique (7T)*	RICHESSE RELATIVE Pauvre TYPE D'HUMUS Sol organique*, mor PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE Pauvre	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Résineux** ESPÈCE DOMINANTE EPN* DENSITÉ B, C	ORIGINE Non décelable PERTURBATION Épidémie légère	SOUS-RÉGION 3a-S
SPS (0,68%)	Sphagnum girgensohnii (SPG) Sphagnum magellanicum (SPM) Sphagnum fuscum (SPG) Sphagnum squarrosum (SPG) Sphagnum sp. (SPS) Nemopanthus mucronatus (NEM	POSITION TOPOGRAPHIQUE Terrain plat* Moyen versant*	RICHESSE RELATIVE Pauvre TYPE D'HUMUS Sol organique** PH DE L'HUMUS < 4,2 RICHESSE FLORISTIQUE Moyenne	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Résineux** ESPÈCE DOMINANTE EPN, THO DENSITÉ C, B	ORIGINE Non décelable Coupe totale PERTURBATION Sans préférence	SOUS-RÉGION 3b-T*

Tableau 5.8 (suite)

GROUPE D'ESPÈCES INDICATRICES	ESPĒCES	VARIABLES PHYSIQUES ⁽²⁾	RÉGIME NUTRITIF ⁽²⁾	COUVERT FORESTIER(2)	ORIGINE PERTURBATION ^[2]	RÉPARTITION GÉOGRAPHIQUE ⁽²⁾
AUR SPS (2,10%)	Ainus rugosa (AUR) Oamunda cinnamomea (OSC) Sphagnum girgensohnii (SPG) Sphagnum megellanicum (SPM) Sphagnum fuscum (SPF) Sphagnum squarrosum (SPQ) Sphagnum ep (SPS) Nemopenthus mucronatus (NEM	Pente: D à 3%** DÉPÔT Sol organique (7T)*		TYPE PHYSIONOMIQUE Arboreacent TYPE DE COUVERT Résineux*, mélangé- résineu ESPÈCE DOMINANTE EPN DENSITÉ B, C	ORIGINE Non décetable PERTURBATION Épidémie légère	SOUS-RÉGION 3&S
AUR RUP (1,22%)	Alnus rugosa (AUR) Osmunda cinnemomes (OSC) Rubus pubescens Comus attemifolia Mnium sp. Dryopteris phegopteris	RÉGIME HYDRIQUE Hydrique POSITION TOPOGRAPHIQUE Terrain plat* Base versant* Pente: 0 à 3%*** DÉPOT TEXTURE DE L'HORIZON "B" Ne s'appilque pas pour (71) ÉPAISSEUR D'HUMUS > 41cm* ALTITUDE 250 à 349 m***	RICHESSE RELATIVE Tris riche TYPE D'HUMUS Sol organique* PH DE L'HUMUS > 4.2 RICHESSE FLORISTIQUE Riche	TYPE PHYSIONOMIQUE Arborescent** TYPE DE COUVERT Résineux ESPÈCE DOMINANTE THO DENSITÉ B, C	ORIGINE Non décelable PERTURBATION Sans préférence	SOUS-RÉGION 36-T
TIC RUP (1.12%)	Tisrells cordifolis (TIC) Viols sp. (VIS) Dryopteris disjuncts (DRD) Aster acuminatus (ASA) Osmunda cinnamomas (OSC) Alhyrium fikx-femina (ATF) Rubus pubescens Comus alternifolis Mnium sp. Dryopteris phegopteris	RÉGIME HYDRIQUE Hydrique POSITION TOPOGRAPHIQUE Terrain plat Base versant* Pente: 0 à 3%* DÉPÔT TIII (1A), sol organique (7T) TEXTURE DE L'HORIZON "B" Movenne ÉPAISSEUR D'HUMUS > 41cm, 6 à 10 cm ALTITUDE 250 à 349 m*, 350 à 449 m	RICHESSE RELATIVE Très riche TYPE D'HUMUS Sol orgenique, tourbe PH DE L'HUMUS > 4,2 RICHESSE FLORISTIQUE iRiche	TYPE PHYSIONOMIQUE Arboresceni** TYPE DE COUVERT Sans préférence ESPÈCE DOMINANTE THO DENSITÉ C, B, A	ORIGINE Coupe totale PERTURBATION Épidémie légère	SOUS RÉGION 3b-T*

⁽¹⁾ Les préférences sont compliées avec la fréquence relative : % des relevés observés dans chacune des classes de toutes les variables.

⁽²⁾Le pourcentage de relevés où le groupe d'espèces indicatrices est présent.

⁽³⁾Seules les classes où on retrouve 1 % des relevés et plus sont retenues.

^(%) es données marquées d'une étoile (*) signifient que pour le verieble considérée, le pourcentage de fréquence de la classe retenue est plus grand ou égal à 50%. Elle est égale ou supérieure à 75% si elle est marquée de deux étoiles (**). Une classe n'est pas retenue torsque le pourcentage de la fréquence est inférieur à 25%.

Tableau 5.9 : Richesse relative des groupes d'espèces indicatrices du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Groupe d'espèces indicatrices	Nombre de relevé	Indice seepage	Richesse relative du seepage	Indice pente arrière	Rich. rel. de la pente arrière	Indice humus	Richesse relative de l'humus	Indice richesse floristique	Richesse floristique relative	Indice richesse relative ⁽¹⁾	Richesse relative ⁽²
SPS GRS	11	00,0	Р	0,10	Р	0,00	Р	0,10	Р	0,20	
SPS OXM	5	00,0	Р	0,00	Р	0,00	P	0,25	Р	0,25	1
AUR RUP SPS	7	00,0	Р	0,16	P	00,00	Р	0,16	Р	0,32	1
VAM SPS	13	0,00	Р	0,09	P	0,21	P	0,18	Р	0,48	1
VAM PLS	- 8	00,00	Р	0,33	Р	0,17	P	0,00	Р	0,50	1
SPS	14	_0,00	Р	80,0	Р	00,00	Р	0,44	М	0,52	1
VAA PLS	13	0,09	R	0,19	Р	0,22	P	0,19	Р	0,69	1
AUR SPS	43	00,0	Р	0,22	Р	00,00	Р	0,58	М	0,80	Pauvre
VAM OXM	21	0,00	Р	0,41	Ρ	0,18	Р	0,41	М	1,00	Pauvie
CLB	54	0,04	M	0,43	М	0,26	Р	0,31	Р	1,04	1
VAM DIE	25	0,00	P	0,32	Р	0,32	Р	0,47	М	1,11	1
VAM	11	0,11	R	0,56	М	0,12	Р	0,38	М	1,17	1
VAA	11	00,00	Р	0,37	Р	0,37	Р	0,43	М	1,17	1
VAA DIE	38	00,00	Р	0,35	Р	0,64	М	0,29	Р	1,28	1
AUR	14	0,00	P	0,56	М	0,33	Р	0,55	М	1.44	İ
DIE PLS	40	0.00	P	0,74	М	0,22	Р	0,84	М	1,80	1
ERE CLB	62	0,03	М	0,32	Р	0,51	М	1,28	R	2.14	
ERE VIL OXM	17	00,00	P	0,55	М	1,13	М	0,60	М	2,28	1
ERE DIE	105	0,02	M	0,98	М	0,72	М	0.62	М	2,34	1
PLS	10	00,00	P	0,25	Р	0,20	Р	2,00	R	2,45	İ
ERE OXM	138	80,0	М	1,10	R	0,56	М	0,75	м	2,49	
ERP	139	0,04	М	0,79	М	1,61	R	0,32	М	2,76	Moyenne
ERE GRS	13	0,00	P	0,61	М	0,70	М	1,77	R	3,08	1
ERE ERP	348	0,03	М	0,80	М	1,94	R	0,32	М	3,09	
ERE	274	0,01	М	0,87	М	1,51	R	0.81	м	3,20	
ERE DIE TIC	20	0,00	P	0,82	М	1,00	М	1,83	R	3,65	
RUI GRS	21	0,00	Р	0,75	М	2,42	R	0,72	М	3,89	
ERE ERP TIC	50	0,06	M	1,17	R	2,00	R	0,77	М	4,00	
ERE RUI	21	00,0	Р	0,51	М	3,26	R	0,26	Р	4,03	
V1L	58	0,10	R	_0,80	М	2,81	R	0,38	М	4.09	
ERE TIC RUP	58	0,10	R	1,06	R	1,16	М	2,00	R	4,32	
ERE TIC	12	0,09	R	1,40	R	2,03	R	1,17	R	4,69	
TIC	7	0,00	Р	1,35	R	1,97	R	1,45	R	4,77	Riche
ERE VIL	93	0,01	М	0,96	М	3,35	R	0,66	М	4,98	
ERE RUP	17	0,13	R	1,46	R	1,00	М	2,50	R	5,09	
ERE TIC OXM	12	0,22	R	3,00	R	1,00	М	1,22	R	5.44	
TIC GRS	10	00,00	Р	2,33	R	1,33	М	2,00	R	5,66	
ERP VIL	39	0,03	М	0,45	М	5,67	R	0,06	Р	6,21	
ERE VIL TIC	62	0,20	R	1,50	R	3,00	R	2,74	R	7,44	
AUR RUP	25	0,00	Р	0,25	Р	5,00	R	2,67	R	7.92	Très riche
TIC VIL	13	0,09	R	0,30	Р	7,75	R	1,54	R	9.68	
TIC RUP	23	0,09	R	0,22	Р	7,75	R	4,00	R	12,06	
JON CLASSE	72						<u>-</u>				
NON-CLASSÉ	12 1										

⁽¹⁾ Indice = somme des indices des quatre (4) variables les plus significatives: le seepage, la pente arrière, l'humus et la richesse floristique.

Riche: 4,00 ≥ indice < 6,00

Très riche: indice ≥ 6,00

⁽²⁾ Pauvre: indice ≤ 2,00 Moyenne: 2,00 < indice < 4,00

Tableau 5.10: Classification des groupes d'espèces indicatrices en fonction de la richesse relative, du régime hydrique, des perturbations ou des origines et des essences forestières du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Régime hydrique	·	Richesse relative		
	Pauvre	Moyenne	Riche	Très riche
Xérique (Classes 00-10)	VAA (BR), VAM			
Xérique-mésique (Classes 0-10-20)	VAA DIE (BR), CLB VAM DIE (BR)	ERE DIE (BR), ERE ERP, ERP, ERE, ERE CLB, ERE GRS	ERP VIL	
Mésique (Classes 20-30)	VAM PLS, VAA PLS (BR)	ERE DIE TIC, DIE PLS (BR), ERE RUI (CT), VIL, ERE VIL OXM	ERE VIL, TIC, ERE RUP, ERE TIC, TIC GRS	
Mésique-subhydrique (Classes 30-31-40)	VAM OXM, AUR	ERE ERP TIC, RUI GRS ERE OXM		TIC VIL, ERE VIL TIC
Subhydrique (Classes 31-40-41)		PLS	ERE TIC OXM, ERE TIC RUP	
Hydrique (Classes 41-50-60-61)	VAM SPS, AUR SPS, SPS, AUR RUP SPS, SPS GRS, SPS OXM			TIC RUP (CT) AUR, RUP
Relations entre les groupes d'espèces indicatrices et les espèces forestières	EPN, PIG, BOP, EPR	ERS, BOJ, BOP, PET, SAB	ERS, BOJ, BOP	ERS, THO, BOJ

Afin de connaître la signification des régimes hydriques, voir l'annexe 3 (clé d'identification des régimes hydriques)

(BR): Groupe associé aux brûlis

(CT): Groupe associé aux coupes totales

Tableau 5.11 : Régime hydrique et richesse relative des groupes d'espèces indicatrices du sousdomaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon le seepage

Groupe d'espèces	Nb.						Clas	se de	drair	age ⁽¹)					Indice de	Régime	Indice de	Richesse
indicatrices	de rel.	00	10	11	16	20	21	30	31	40	41	50	51	60	61	Drainage ⁽²⁾	hydrique	seepage ⁽³⁾	relative ⁽⁴⁾
VAA	11	9	27			64			1						t	0,00	XE	0.00	
ERE GRS	13					85				В		8		t	1	0.19	XE-ME	0.00	
VAA DIE	38		13		3	68		16								0,00	XE-ME	0,00	
VAM DIE	25		4			68		20		8						0.09	XE-ME	0.00	
DIE PLS	40		3			35		55		8	1	T			\vdash	0.09	ME	0.00	
ERE DIE TIC	20					45		50		5				1		0,05	ME	0.00	
ERE RUI	21					38		48		10		5				0.17	ME	0.00	
ERE VIL OXM	17					18	ļ	65		18					1	0.22	ME	0.00	
RUI GRS	21		5		1	33		29		19				14		0,49	ME	0.00	
TIC	7					43		43		14						0,16	ME	0.00	Pauvre
VAM PLS	8		13			13		63		13						0.15	ME	0.00	
AUR	14							50		7		14	<u> </u>	29		1,00	ME-SU	0,00	
VAM OXM	21	T				10		62		19		10		T		0.40	ME-SU	0.00	
PLS	10					20		20		30		- 		30		1,50	SU	0,00	
AUR RUP	25							8		12		4		76	1	11.50	НҮ	0,00	
SPS	14	<u> </u>						7		7		7		79		13,29	НҮ	0,00	
SPS GRS	11									_		18		82		> 13,29	HY	0,00	
SPS OXM	5							1	\vdash	20		20		60	<u> </u>	> 13,29	HY	0.00	
VAM SPS	13		8			15		15		8				54		1,63	HY	0.00	
ERE	274		4			46	0	40	0	7	1	1		0		0,10	XE-ME	0,01	
ERE DIE	105		5			49	1	43	1	2	<u> </u>	Ė		-		0,03	XE-ME	0.02	
ERE VIL	93		2			32		57	1	6			1			0,09	ME	0.02	
AUR SPS	43				2			9		16		5	<u> </u>	65	2	8,00	HY	0,02	
ERE ERP	348		3		1	53	1	38	2	2				0	1	0.04	XE-ME	0,02	
ERP VIL	39					51		41	3	5						0.09	XE-ME	0.03	Moyenne
ERE CLB	62		6			44		35	3	8		3				0,16	XE-ME	0,03	
CLB	54	2	4		4	43	2	24	2	17		4				0.29	XE-ME	0,04	
ERP	139	1	5	1		55	2	31	2	2				1		0.05	XE-ME	0.05	
ERE ERP TIC	50		4			36		38	6	12		2		2		0,28	ME	0.06	
ERE OXM	138	1	1			20		46	1	19	6	2	1	5		0,50	ME-SU	0.08	
VAA PLS	13	8	15			31		23	8	8				8		0.31	ME	0.09	
TIC VIL	13				8	23		31	8	8		8		15		0,63	ME-SU	0.09	
ERE TIC	12					33		33	8	25		_					ME	0.09	
∕IL	58					47	2	36	5	5	2	2		2			ME	0,10	
√AM	11		27		9	27	9	9		-		9		9	-	0,13	XE	0,10	
TIC GRS	10					30		30		10		20	10	Ť	\neg	0,67	ME	0,10	
ERE RUP	17		12			24		35			12	6		12			ME	0,13	Riche
TIC RUP	23					4		9	4	13	4	22	4	39		6,62	HY	0,13	
AUR RUP SPS	7					-			-	14	-	29	7	43	14		HY	0.14	
ERE TIC RUP	58		2			10		22	3	29	5	9	7	12		1,91	SU SU		
ERE VIL TIC	62					19	3	39	11	18	2	5	2	12	2		ME-SU	0,18 0,25	
RE TIC OXM	12					.,,	8	33		25	8	8	-	8	8	1,39	SU SU	0,25	
NON CLASSÉ	72														_ <u>-</u>	1,30		الارات	

[©] Les données sont exprimées en fréquence relative : % des relevés observés dans cette classe de drainage.Le total peut différer légèrement de 100% à cause de l'arrondi.

© Indice = classes de drainage humide(31+40+41+50+51+60) / classes de drainage sec (0+10+16+20+21+30)

TOTAL

Moyenne = 0,00 < indice < 0.09

2047

Riche = indice ≥ 0,09

Ondice = classes de drainage avec seepage(21+31+41+51+61) / classes de drainage sans seepage(0+10+16+20+30+40+50+60)

[©] Pauvre = indice <u><</u> 0,00

Tableau 5.12 : Richesse relative des groupes d'espèces indicatrices du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon la pente arrière

Groupe d'espèces	Nombre de		Classe de p	Indice de	Richess		
indicatrices	relevés	0 à 50 mètres	50 à 100 mètres	100 à 200 mètres	Plus de 200 mètres	pente arrière(2)	relative ⁽⁾
SPS OXM	5	100				0,00	
SPS	14	93			7	90,0	
VAM SPS	13	92	8			0.09	
SPS GRS	11	91	9			0,10	
AUR RUP SPS	7	86			14	0,16	
VAA PLS	13	85	8	8		0,19	
AUR SPS	43	81	9	2	7	0,22	
TIC RUP	23	83	9		9	0,22	
AUR RUP	25	80	16	4		0,25	_
PLS	10	80	10		10	0,25	Pauvre
TIC VIL	13	77	15		8	0,30	
ERE CLB	62	76	10	11	3	0,32	
VAM DIE	25	76	20		4	0,32	
VAM PLS	8	75	25			0,33	
VAA DIE	38	74	16	5	5	0,35	
VAA	11	73	9	18		0,37	
VAM OXM	21	71	14	10	5	0,41	
CLB	54	70	17	9	4	0,43	
RP VIL	39	69	21	5	5	0,45	
ERE RUI	21	67	24	10		0,51	
RE VIL OXM	17	65	12	24		0,55	
AUR	14	64	7	29		0,56	
/AM	11	64	27	9		0,56	
RE GRS	13	62	38			0,61	
DIE PLS	40	58	23	15	5	0,74	
RUI GRS	21	57	19	14	10	0,75	Moyenne
RP	139	56	29	9	6	0,79	
RE ERP	348	55	27	13	4	0,80	
1L	58	55	22	19	3	0,80	
RE DIE TIC	20	55	15	15	15	0,82	
RE	274	54	26	13	8	0,82	
RE VIL	93	51	28	16	5		
RE DIE	105	50	33	13	3	0,96 0,98	
RE TIC RUP	58	48	24	10	17	1,06	
RE OXM	138	48	25	17	11		
RE ERP TIC	50	46	24	22	8	1,10	
c	7	43	29	29		1,17	
RE TIC	12	42	17	17	25	1,35	Riche
RE RUP	17	41	24	24	12	1,40	NICHE
RE VIL TIC	62	40	32	18	10	1,46	
C GRS	10	30	10	50		1,50	
RE TIC OXM	12	25	17	50	10 8	2,33	
on classés	72			<u> </u>		3,00	
	2047						

⁽¹) Les données sont exprimées en fréquence relative : % des relevés observés dans cette classe de pente arrière. Le total peut différer légèrement de 100% à cause de l'arrondi.

⁽²⁾ Indice = (classe de pente arrière > 50m) / (classe de pente arrière < 50 m)

[©] Pauvre : Indice ≤ 0,44 Moyenne : 0,44 < indice < 1,00 Riche : Indice ≥ 1,00

Tableau 5.13 : Richesse relative des groupes d'espèces indicatrices du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon le type d'humus ou de l'horizon organique

Groupe d'espèces	Nombre de	TYPE D'HUMUS ⁽¹⁾							Indice	Richesse
indicatrices	relevés	Mor	Tourbe	Sol org.	Anmoor	Moder	Mull	Na	humus ⁽²⁾	relative ⁽³
AUR RUP SPS	7	14	29	57					0,00	
AUR SPS	43	26	9	65		***			0.00	i
SPS	14	14	7	79				†	0,00	f ·
SPS GRS	11	9	18	73					0.00	i
SPS OXM	5	20	20	60					0,00	İ
VAM	11	73		9		9		9	0.12	l
VAM PLS	8	75	13			13			0,17	
VAM OXM	21	76	10			14			0.18	Pauvre
PLS	10	50		30		10		10	0,20	Pauvre
VAM SPS	13	38		54		8			0,21	
DIE PLS	40	83				18			0.22	
VAA PLS	13	69		8		15		8	0.22	
CLB	54	72	6	2		19		2	0.26	
VAM DIE	25	76				24			0.32	
AUR	14	43	14	29		14			0.33	
/AA	11	73				18	9		0,37	
ERE CLB	62	63		2	3	29	3		0,51	
ERE OXM	138	59	2	6		32	1		0.56	
/AA DIE	38	58				37		5	0,64	
ERE GRS	13	54			8	38			0.70	
RE DIE	105	58				42			0.72	
RE DIE TIC	20	50				45	5		1,00	
RE RUP	17	41	6	12		41			1,00	Moyenn
RE TIC OXM	12	33	8	17	8	33			1,00	
/AA OXM	2	50				50			1,00	
RE VIL OXM	17	47				53			1,13	
RE TIC RUP	58	31	21	12		33	3		1,16	
IC GRS	10	30	10	10	10	30	10		1,33	
RE	274	39	0	0	0	57	2	1	1,51	
RP	139	38		1		60	1		1,61	
RE ERP	348	34		0		65	1		1,94	
TC FDD TIO	7	29	14			57			1,97	
RE ERP TIC	50	32		2	2	62	2		2,00	
RE TIC	12	33				67			2,03	Riche
RUI GRS	21	24		14		48	10	5	2,42	
/IL	58	26	lI	2		66	7		2,81	
RE VIL TIC	62	23	5	2	2	66	3		3,00	
RE VIL	21	19				52	10	19	3,26	
	93	23				77			3,35	
UR RUP	25	4	8	68		8	12		5,00	
RP VIL	39	15				85			5,67	
IC RUP	23	4	30	35		9	22		7,75	Très rich
IC VIL	13	8	15	15		54	8		7,75	
LS SPS	1			100					> 7.75	
01	69									

⁽¹⁾ Les données sont exprimées en fréquence relative : % des relevés observés dans ce type d'humus. Le total peut différer légèrement de 100% à cause de l'arrondi.

⁽²⁾ Indice = (Moder + Mull) / (Mor)

⁽³⁾ Pauvre: indice ≤ 0,50 Moyenne: 0,50 < indice < 1,50 Riche: indice ≥ 1,50 indice < 5,00 Très riche ≥ 5,00

Tableau 5.14 : Richesse relative des groupes d'espèces indicatrices du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest, selon la richesse floristique

Groupe d'espèces	Nombre de						Classe	de nom	bre d'esp	eces ^[1]						Indice de	Richesse
indicatrices	relevés	7 4 14	15 à 19	20 à 24	25 et 26	27 et 26	29 et 30	31 et 32	33 et 34	35 et 36	37 et 38	39 et 40	41 et 42	43 et 44	45 à 52	floristique (2)	relative (3)
VAA OXM	2		 				50	50								0,00	
VAM PLS	8	13	25	38	1	13	13									0,00	
ERP VIL	39	3	18	26	15	5	B	21	3			3				0,06	
SPS GRS	11		1	27	9	18	9	27		i i			9			0,10	
AUR RUP SPS	7		14	43	14		14				14					0,16	Pauvre
VAM SPS	13	8	23	23	В	8		15	15							0,18	Pauvie
VAA PLS	13		23	31	15	8		8			В		-8			0,19	
SPS OXM	5			80									20			0,25	
VAA DIE	36		3	16	3	26	11	21	11	3	3	3	3			0,29	
CLB	54	2	9	31	17	13	2	4	4	6	6	2	2	4		0,31	
ERE RUI	21	5	24	5	10	10	14	10	5	5	5			5	5	0,32	
ERP	139	4	11	21	9	14	7	9	6	5	4	5	3	1	2	0,35	
ERE ERP	348	1	11	20	10	13	10	9	7	7	4	4	1	1	2	0,35	
VAM	11		9	45	1		9	9	9	18		1				0,38	
VAM OXM	21		5	24	10	24	5	5	10	5	<u> </u>	5	10			0,41	
VIL	58	2	9	10	14	14	10	10	7	3	9	5	2		5	0,45	
VAM DIE	25		1	8	8	28	16	8	4	20	4	4				0,47	į
AUR	14	 	14	29	7	7		7	14			7	7	7		0,55	
SPS	14	14	21	7	14		7	1	14	14					7	0,56	
VAA	11		9	9	9	9	9	18		9		9	9		9	0,57	Moyenne
ERE DIE	105		1	10	10	14	13	14	13	6	7	9	3		1	0,64	
AUR SPS	43	7	7	16	5	2	16	7	5	9	2	12	5	2	5	0,67	
ERE VIL	93	1	5	13	8	14	6	12	9	В	11	6	3	2	2	0,69	
ERE VIL OXM	17	1		24	6	12	6	12	24		6			6	6	0,70	
ERE	274	2	3	14	В	7	9	11	12	9	9	7	3	4	3	0,87	
DIE PLS	40		3	3	13	5	23	8	18	5	5	8	10		3	0,89	
RUI GRS	21	5	5	10	19	10		5	10	14	10	5			10	0,91	
ERE ERP TIC	50	2		8	12	10	12	8	8	8	8	4	8	4	В	0,92	
ERE OXM	138		1	13	5	12	8	13	8	9	8	7	3	4	9	0,92	
ERE TIC	12			17	T		17	В	33	- 8	8				- 8	1,36	
ERE TIC OXM	12	1		8	8		17	В			25		17	В	8	1,41	
ERE CLB	62			11	5	8	3	13	13	15	13	6	2	2	10	1,53	
TIC VIL	13			23			8	В	15		15		15	15		1,54	
ERE GRS	13			8		8	l	15	31	8		8	8		15	2,26	
ERE DIE TIC	20			Ī		10	10	10	10	15	10		20		15	2,33	
PLS	10	T	10	10		10	I	LL.		20		30	10		10	2,33	
TIC GRS	10			10		20			L	10	30		20		10	2,33	Riche
TIC	7						29		14	14	14			L	29	2,45	1
ERE TIC RUP	58		1	5	2	7	7	5	2	14	12	7	7	10	22	2,85	
AUR RUP	25	4	4		8	4		4	8	16	12	20	4	4	12	3,17	l
ERE RUP	17			6	6	6	1	- 6	6	6	18	6	6	18	18	3,25	
ERE VIL TIC	62		1	2	2	3	6	10	13	10	13	11	13	3	15	3,39	
TIC RUP	23			<u> </u>		4	4	9	30	4	13	13	4	4	13	4,76	
PLS SPS	1			1	<u> </u>	<u></u>	<u></u>	J	100			<u> </u>		<u> </u>	1	>4 76	<u> </u>
NON CLASSÉ	69																
TOTAL	2047	l															
· - /* -																	

Moyenne. 0,31< indice < 1,00

Riche indice ≥ 1,00

[े] Les données sont exprimées en % du nombre total de relevés. Le total peut différer légèrement de 100% à cause de l'arrondi.

⁽²⁾ Indice = (nb. de relevés ≥ 33 espèces) / (nb. de relevés < 33 espèces)

⁽³⁾ Pauvre: Indice ≤ 0,31.

Tableau 5.15 : Répartition des groupes d'espèces indicatrices par sous-régions écologiques du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Groupe d'espèces	Nombre		Sous-ré	gion éco	logique ⁽	1)	Régime	Richesse
Indicatrices	de relevé	3a-M	3a-T	3a-S	3b-M	3b-T	hydrique	relative
AUR	14	0	2	9	2	1	ME-SU	Р
AUR RUP	25	4	3	5	3	10	HY	TR
AUR RUP SPS	7	0	1	1	3	2	HY	P
AUR SPS	43	3	10	18	3	9	HY	P
CLB	54	4	8	22	10	10	XE-ME	P
DIE PLS	40	4	7	16	2	11	ME	P
ERE	274	28	91	40	37	78	XE-ME	M
ERE CLB	62	2	12	10	13	25	XE-ME	M
ERE DIE	105	21	27	42	1	14	XE-ME	M
ERE DIE TIC	20	5	2	3	1	9	ME	М
ERE ERP	348	44	90	73	58	83	XE-ME	М
ERE ERP TIC	50	3	7	11	17	12	ME	R
ERE GRS	13	5	3	1	2	2	XE-ME	M
ERE OXM	138	11	48	57	3	19	ME-SU	M
ERE RUI	21	2	4	6	4	5	ME	R
ERE RUP	17	4	1	3	5	4	ME	R
ERE TIC	12	2	1	2	3	4	ME	R
ERE TIC OXM	12	1	1	8	0	2	SU	R
ERE TIC RUP	58	8	10	19	7	14	SU	R
ERE VIL	93	14	38	20	4	17	ME	R
ERE VIL OXM	17	3	5	4	1	4	ME	М
ERE VIL TIC	62	13	14	9	5	21	ME-SU	TR
ERP	139	26	21	14	50	28	XE-ME	М
ERP VIL	39	5	8	7	7	12	XE-ME	TR
PLS	10	0	1	1	3	5	SU	М
RUI GRS	21	1	4	4	6	6	ME	М
SPS	14	2	2	2	1	7	HY	Р
SPS GRS	11	0	1	0	5	5	HY	Р
SPS OXM	5	0	1	3	0	1	HY	Р
TIC	7	0	2	1	4	0	ME	R
TIC GRS	10	0	1	2	3	4	ME	R
TIC RUP	23	3	1	1	5	13	HY	TR
TIC VIL	13	0	1	11	8	3	ME-SU	TR
VAA	11	0	2	5	3	1	XE	Р
VAA DIE	38	3	4	23	2	6	XE-ME	Р
VAA PLS	13	3	1	3	1	5	ME	Р
VAM	11	1	2	7	1	0	XE	Р
VAM DIE	25	0	10	15	0	0	XE-ME	Р
VAM OXM	21	1	9	8	0	3	ME-SU	Р
VAM PLS	8	0	2	4	0	2	ME	Р
VAM SPS	13	0	3	6	2	2	HY	P
VIL	58	5	9	6	15	23	ME	М
NON CLASSÉ	72	231	470	492	300	482		
TOTAL	2047			702	550	702		

⁽¹⁾ Les données sont exprimées en nombre de relevés.

Les seize groupes mésiques sont les plus importants en nombre et représentent le tiers des 42 groupes d'espèces indicatrices. Malgré leur grand nombre, les groupes mésiques ne se rencontrent que dans 20 % des relevés, répartis de façon uniforme sur le territoire. Les 8 groupes xériques-mésiques sont les plus représentés avec 56 % des relevés bien distribués dans tout le sous-domaine. Finalement, les groupes xériques, mésiques-subhydriques, subhydriques et hydriques se rencontrent respectivement dans 1 %, 13 %, 4 % et 7 % des relevés et à l'exception des groupes hydriques, ils sont tous plus fréquents dans la sous-région 3a-S.

Les groupes **xériques** « VAA » et « VAM » sont les moins fréquents dans le sous-domaine (22 relevés) et s'observent surtout dans la sous-région 3a-S. Ils sont tous les 2 de richesse relative pauvre et associés aux dépôts très minces couverts d'un humus de type mor. Le groupe « VAA » est fortement lié aux peuplements de forte densité originant de feux.

Les groupes xériques-mésiques « CLB », « ERE », « ERE CLB », ERE DIE », « ERE ERP », « ERE GRS », « ERP », « ERP VIL », « VAA DIE », et « VAM DIE » sont pour la plupart de richesse relative pauvre ou moyenne. Les groupes pauvres « CLB », VAA DIE », et VAM DIE » sont plus fréquents sur les dépôts de texture moyenne couvert d'un humus acide de type mor. Le groupe « CLB » est surtout associé aux peuplements résineux dominés par le sapin. Les groupes « VAA DIE » et « VAM DIE » sont associés à une grande variété de couverts, mais ils sont très liés à des peuplements originant de feux. Le groupe « ERP VIL » est le seul groupe xérique-mésique de richesse relative très riche surtout à cause de son indice d'humus très élevé. Il se rencontre surtout sur des dépôts de till épais couverts d'un humus de type moder, il est fortement lié au couvert feuillu dominé par l'érable à sucre. Tous les autres groupes xériques-mésiques sont de richesse relative moyenne et sont tous des groupes à érable à épis ou érable de Pennsylvanie. Les groupes « ERE », « ERP » et « ERE ERP » sont les 3 groupes les plus importants, avec près de 40 % des relevés. Ils sont tous liés au couvert feuillu dominé par l'érable à sucre. Ils se rencontrent le plus souvent sur des sites en mi-pente couverts de till épais et d'un humus de type moder. Le groupe « ERE GRS », beaucoup moins fréquent que les 3 groupes précédents, montre les mêmes affinités pour les couverts feuillus, mais se rencontre plus souvent sur des dépôts de texture grossière couverts d'un humus de type mor. Finalement, les groupes « ERE CLB » et « ERE DIE » sont liés au couvert mélangé feuillu et sont tous les deux fortement associés aux sites en mi-pente couverts de till épais et d'un humus de type mor.

Les groupes mésiques sont au nombre de 14. Les groupes de richesse relative pauvre, «DIE», «PLS» «VAA PLS» et «VAM PLS» se trouvent plus souvent sur des sites couverts de till, parfois très mince et où l'humus est de

type mor. Les groupes à vaccinium « VAA PLS » et « VAM PLS » sont liés au couvert résineux composé surtout d'épinettes noires. Les groupes « ERE DIE TIC », « ERE VIL OXM » et « RUI GRS » sont de richesse relative moyenne et sont surtout liés au couvert feuillu, aux dépôts de till et type moder. Les humus de 8 derniers groupes mésiques « ERE ERP TIC », « ERE RUI », « ERE TIC », « ERE VIL », « TIC GRS » ET « VIL » sont tous de richesse relative riche. Ces groupes sont très fortement associés à des sites en mi-pente couverts de till épais et d'un humus de type moder. Les groupes à tiarrelle « TIC » ou à ronce pubescente « RUP », sont aussi fréquents sur les sites en bas de pente et en bas versant. Tous ces groupes sont aussi très liés au couvert feuillu dominé par l'érable à sucre et le bouleau jaune dans des peuplements de forte densité. Seul le groupe « ERE RUI » s'écarte un peu de cette tendance et montre plus d'affinité pour les peuplements ouverts.

Les groupes **mésiques-subhydriques**, « AUR », « ERE OXM », « ERE VIL TIC », « TIC VIL », et « VAM OXM » ne sont pas très importants (13 % des relevés). Les groupes « AUR » et « VAM OXM » sont de richesse relative pauvre. Le groupe « AUR » se rencontre plus fréquemment dans la sous-région septentrionale 3a-S sur des sites en bas de pente couverts de till ou de sol organique. Il est lié aux peuplements mélangés feuillus, mais aussi aux peuplements résineux sur les sites mal drainés et plus pauvres. Le groupe « VAM OXM » préfère nettement les terrains plats couverts de till épais et accompagné d'un humus de type mor où l'épinette noire domine le couvert.

Le groupe « ERE OXM » est de richesse relative moyenne et se rencontre plus souvent sous couvert mélangé feuillu dans des peuplements dominés habituellement par le bouleau jaune, le bouleau à papier et le sapin. Il affectionne particulièrement les sites couverts d'un dépôt de till épais et d'un humus de type mor.

Les groupes « ERE VIL TIC » et « TIC VIL » sont de richesse relative très riche et occupent des sites habituellement en mi-pente ou bas de pente sur des moyens versants. Ils sont fortement associés aux dépôts de till de texture moyenne couverts d'un mince humus de type moder. Les deux groupes d'espèces indicatrices se rencontrent presque exclusivement sous couvert feuillu dans des peuplements d'érable à sucre et de bouleau jaune.

Finalement, huit groupes d'espèces indicatrices appartiennent au drainage hydrique. Les groupes « AUR SPS », « AUR RUP SPS », « SPS », SPS GRS », « SPS OXM » et « VAM SPS » sont de richesse relative pauvre. Tous ces groupes se rencontrent exclusivement sur des terrains plats couverts de sol organique épais et acide et ils sont tous très fortement liés aux peuplements d'épinettes noires et ou de thuya de densité moyenne (B, C). Les

groupes « TIC RUP » et « AUR RUP » sont de richesse relative très riche. Le groupe « TIC RUP » occupe habituellement des terrains plats en bas versant couverts de till de texture moyenne et d'un humus assez épais, ou de sol organique. Ce groupe se rencontre aussi souvent sous couvert feuillu que sous couvert résineux et le thuya est presque toujours présent. Le groupe « AUR RUP » occupe aussi des terrains plats couverts de sol organique et affectionne surtout les peuplements résineux composés essentiellement de thuya accompagné de sapin.

		÷	

6. TYPES FORESTIERS

On mentionne au chapitre 2, que le type forestier est une unité de classification qui décrit la végétation actuelle, au moyen des essences forestières dominantes et des espèces indicatrices du sous-bois. La clé de la figure 6.1 permet de déterminer la ou les essence(s) (maximum 3) qui domine(nt) le couvert auquel on ajoute le groupe d'espèces indicatrices identifié dans la parcelle.

Pour l'ensemble du territoire de l'érablière à bouleau jaune de l'ouest, nous avons identifié 78 types forestiers qui étaient présents dans au moins 3 relevés (tableau 6.1). Les couverts feuillus sont les plus importants (69 %), suivis des couverts mélangés (16 %) et résineux (15 %). L'érable à sucre seul et accompagné du bouleau jaune sont les plus fréquents avec 57 % des relevés ayant un couvert feuillu. Dans le cas des types forestiers mélangés, les couverts où dominent le bouleau jaune accompagné surtout du sapin sont présents dans plus de 40 % des cas et ceux dominés par l'érable à sucre sont les deuxièmes en importance avec 21 % des relevés. Finalement, les couverts résineux sont surtout représentés par l'épinette noire (45 %), par le thuya (22 %) et par le pin blanc (15 %). On remarque également que les groupes d'espèces indicatrices des types forestiers résineux sont plus souvent formés d'espèces de milieux humides (AUR, SPS, etc.) et de plus, ces types sont plus fréquents dans la région écologique 3a.

Mai 1999 95

Figure 6.1 : Clé d'identification de la physionomie et du couvert arborescent du type forestier

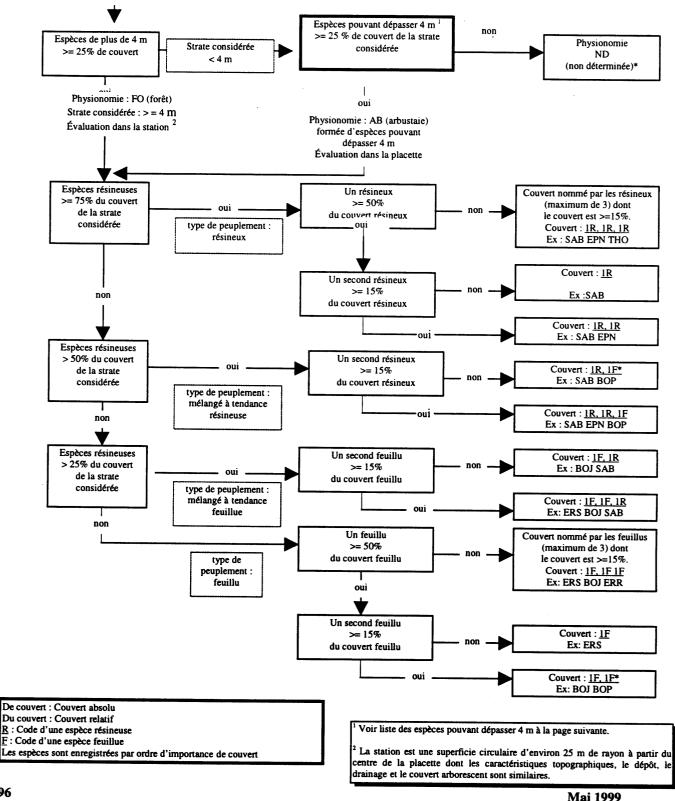


Tableau 6.1 : Liste des types forestiers par type de couvert et région écologique du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Type forestier	Nb. de rel.	Région 3a	Région 3b	Type forestier	Nb. de rel.	Région 3a	Région 3b
		Ty	pe de co	uvert feuillu			
BOJ-ERE/ere oxm	3	3		ERS-BOP/ere erp] 3		
BOJ-ERR/ere vil	4	3		ERS-CHR-ERR/ere erp	3	1	- 1
BOJ-ERS-ERP/ere erp	3	3		ERS-CHR/ere erp	3		
BOJ-ERS-HEG/ere erp	3	1	2	ERS-ERP/ere erp	4	2	
BOJ-ERS/ere vil tic	3	3		ERS-HEG-BOJ/erp	6	1	Ş
BOJ/ere vil tic	4	2	2	ERS-HEG-OSV/ere erp	5	2	
BOP-ERR/ere	4	3	1	ERS-HEG-TIL/erp	3	- 4	
BOP-ERR/ere die	3	3		ERS-HEG/ere erp	15	5	10
BOP-PET-ERR/ere die	3	1	2	ERS-HEG/erp	9	3	- 10
BOP/ere	3	1		ERS-HEG/vil	3	1	2
BOP/ere oxm	5	5		ERS-OSV/ere erp	8	3	
CHR-ERS-OSV/ere erp	3	2	1	ERS/ere	23	12	11
ERS-BOJ-ERP/ere erp tic	5	2		ERS/ere erp	45	16	29
ERS-BOJ-TIL/ere erp	4	2		ERS/ere erp tic	3	3	
ERS-BOJ/ere	9	5	4	ERS/ere vil	14	10	4
ERS-BOJ/ere erp	17	9		ERS/ere vil tic	4	2	2
ERS-BOJ/ere erp tic	4	2	2	ERS/erp	7 7	1	
ERS-BOJ/ere vil	6	5		ERS/erp vil	10	4	- 6
ERS-BOJ/ere vil tic	3	1		ERS/vil	8	3	6
ERS-BOJ/vil	5	1	4	HEG-ERS/ere erp	3	2	
RS-BOP/ere	4	1	3		 		
	Type o	le couver	t mélano	é à dominance feuillue	<u> </u>		
BOJ-BOP-EPB/ere	3	3		BOP-SAB/ere clb			
3OJ-BOP-SAB/ere oxm	5	2		ERR-BOP-SAB/ere clb	3		2
BOJ-ERR-SAB/ere erp	4	2	2	ERS-BOJ-SAB/ere	3		2
BOJ-ERR-SAB/ere vil tic	3	2		ERS-BOJ-SAB/ere erp	3	2	1
3OJ-ERR-THO/ere oxm	3	3		ERS-BOJ-SAB/ere vil tic	5	2	3
3OJ-ERS-PRU/ere	3	2	1	ERS-HEG-SAB/ere erp	3	1	2
OJ-ERS-SAB/ere erp	3	1	2	PET-SAB/ere oxm	3	2	1
OJ-THO/ere oxm	3	2	1	TET GAB/ere oxiii	3	2	1
	Type d		mélancé	à dominance résineuse	<u> </u>	l l	
PIB-SAB-ERR/ere	4	4					
PRU-BOJ/erp	3	- 1		SAB-THO-ERR/ere erp	3	3	
RU-ERP/erp	3		2	THO-SAB-BOJ/ere erp	3	2	1
		Time					
PN-MEL/aur sps	4			ert résineux			
PN-PIB/vam oxm	4	3	1	PIB-SAB/ere erp	3	3	
PN-SAB/aur sps		3		PIB-SAB/ere oxm	6	6	
PN-SAB/aur sps PN-SAB/sps grs	4	2		PRU/ere	3	1	2
PN-SAB/vam oxm	3	1	2 1	PRU/ere erp	4	2	2
PN/aur sps	3	3	[THO-EPN/aur rup	3	3	
PN/sps		2		THO-SAB/tic rup	3	1	2
PN/vam pls	4		2	HO/ere	3	3	
PN/vam sps	3	3		HO/tic rup	4	1	3
Tu valii sps	3	2	1				
			Non déte	rminé			
ui grs	3		3		I	1	

			٠

7. VÉGÉTATIONS POTENTIELLES

7.1. Détermination et reconnaissance des végétations potentielles

On définit la végétation potentielle comme étant l'unité de classification qui synthétise les caractéristiques dynamiques de la végétation d'un lieu donné. Les sites ayant des caractéristiques semblables en ce qui a trait aux essences de fin de succession, aux groupes d'espèces indicatrices et aux niveaux de richesse relative (texture du dépôt), sont susceptibles de supporter la même végétation potentielle. Pour le sous-domaine de l'érablière à bouleau jaune de l'ouest, nous avons déterminé les principales végétations potentielles en réalisant un certain nombre d'étapes :

- en identifiant des essences de fin de succession;
- en analysant les relations entre les groupes d'espèces indicatrices et les essences principales pour estimer les végétations potentielles ;
- en confectionnant une clé d'identification des végétations potentielles ;
- en comparant les résultats de l'application de la clé sur la base de données avec les végétations estimées à la deuxième étape.

L'identification des essences de fin de succession

Cette dernière se fait uniquement par la connaissance que nous avons des espèces présentes sur ce territoire. Dans ce cas-ci, les essences de fin de succession sont l'érable à sucre, le bouleau jaune, le hêtre, le chêne rouge, l'ostryer de Virginie, le tilleul, le cerisier tardif, le frêne d'Amérique, le noyer cendré, le frêne noir, l'érable rouge, le sapin, l'épinette noire, l'épinette rouge, l'épinette blanche, le thuya, le pin blanc, le pin rouge et la pruche.

L'analyse des relations entre les groupes d'espèces indicatrices et les essences forestières est réalisée à l'aide du tableau 7.1. On peut constater que les groupes d'espèces indicatrices à éricacées (VAA et VAM), ainsi que les groupes à sphaignes (SPS) sont très liés à l'épinette noire, au pin gris et au pin blanc. L'épinette noire est plus particulièrement associée aux groupes à vaccinium myrtilloïdes (VAM) et à sphaignes (SPS), les plus humides et souvent les plus pauvres. Le sapin n'est pas lié à une catégorie de groupe d'espèces indicatrices. Le bouleau jaune est associé à certains groupes de richesse relative moyenne et contenant le groupe élémentaire à oxalis montana (OXM), mais démontre plus d'affinité pour les groupes un peu plus riches à érable à épis (ERE), à tiarelle (TIC) et à viorne à feuilles d'aulne (VIL).

Tableau 7.1 : Végétation potentielle estimée à partir des relations entre les groupes d'espèces indicatrices et les essences servant à définir les végétations potentielles du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Groupe d'espèces indicatrices	Nb. de rel.	Régime hydrique	Richesse relative	ERS ⁽¹⁾	TIL	FRA	CŒT	osv	вол	CHR	HEG	SAB	ЕРВ	тно	FRN	FRP	EPN	EPR	PRU	PIB	PIR	PIG	MEL	вор	B OG	SOA	SOD	PET	PEB	ERR	Groupe EPN ⁽²⁾	Essences dominantes	Végétation potentielle estimée
VAM SPS	_13	HY	Pauvre	o	0	0	0	0	18	0	0	40	7	22	0	0	61	6	14	24	5	22	29	27	0	12	3	6	0	21	118	EPN-SAB	RE3-RS3
VAA PLS	13	ME	Pauvre	5	0	5	12	0	15	14	0	38	15	29	0	0	33	38	12	28	19	34	5	35	0	10	0	10	Ò	21	110	SAB-EPR-BOP	RS2-RS5
VAM PLS	8	ME	Pauvre	0	0	0	0	0	8	8	Ö	53	18	32	0	0	58	16	0	17	0	27	ō	37	0	14	Ö	5	0	19	101	EPN-SA8	RE2-RS2
SPS	14	HY	Pauvre	5	0	0	0	0	24	3	0	46	16	42	19	0	55	15	22	8	0	0	20	16	0	10	0	0	0	24	90	EPN-SAB	RS3-RC3-RE3
AUR SPS	43	HY	Pauvre	6	0	0	0	2	19	5	3	47	17	37	10	0	47	23	12	15	5	3	16	32	0	17	0	13	0	29	89	EPN-SAB-THO	RS3-RC3-RE3
VAA DIE	38	XE-ME	Moyenne	6	0	0	0	2	6	18	3	38	16	18	0	0	29	34	0	34	24	25	0	45	0	11	0	31	0	43	88	BOP-ERR-SAB	MS2-MJ2
VAM DIE	25	XE-ME	Pauvre	4_	0	0	0	0	10	16	2	36	24	10	٥	0	37	29	0	33	19	20	2	40	0	12	0	32	3	35	88	BOP-EPN-SAB	MS2-RS2
VAM OXM	21	ME-SU	Pauvre	0	0	0	0	0	11	6	4	48	21	24	0	0	52	20	10	30	18	0	5	44	0	21	0	26	0	37	77	EPN-SAB-BOP	RS2
DIE PLS	40	ME	Moyenne	24	4	7	0	10	4	25	6	43	27	18	2	0	23	32	4	30	20	13	3	49	2	9	0	35	2	44	71	BOP-ERR-SAB	RS3-RC3-RS1
AUR RUP SPS	7	HY	Pauvre	0	0	0	0	0	19	0	0	34	9	40	0	0	44	0	4	18	0	0	23	28	0	111	0	15	0	16	67	EPN-THO-SAB	RC3-RS3-RS1
SPS GRS SPS OXM	11	HY	Pauvre Pauvre	6	0	00	0	0	12	-	3	36	16	43	5	0	36	0	6	7	0	0	30	14	0	6	0	14	0	16	66	THO-SAB-EPN	RS3-RC3-RS1
AUR	14	ME-SU	Movenne	4-	 0	0	0	0	35 24	6	3	53 48	21 28	48	18	0	37 28	11 29	39 19	4	0	0	18	19	0	8	0	0	0	21	66	SAB-THO-PRU	RS3-RC3-RS1
RUI GRS	21	ME	Movenne	31	4	2	7	7	14	10	19	33	28	23	8	-	27	12	8	11	3	13	10	34	0	13	0	23	5	32	65	SAB-THO-BOP	RS1-RS5
VAM	11	XE	Moyenne	7	0	0	ó	ó	21	39	4	44	14	19	8	ö	31	14	3	39	18	12	 	31	-	13	0	29 0	0	28	62 57	SAB-BOP	RS2-MS2
VAA	11	XE	Movenne	34	4	ö	19	7	12	9	13	45	15	26	6	0	15	35	4	40	30	6	 0	47	片	10	3	33	5	38	56	SAB-CHR-ERR BOP-SAB-PIB	RP1
CLB	54	XE-ME	Pauvre	23	6	4	4	9	22	15	23	53	23	34	Ö	ō	29	23	14	21	14	H	3	39	H	11	1	26	2	36	30 55	SAB-BOP-ERR	MS2-MJ2
AUR RUP	25	HY	Riche	14	6	9	5	ť	19	3	4	38	20	45	20	ö	30	2	9	В	0	ŏ	15	22	H	13	-	13	11	19	47	THO-SAB	RC3-RS1
ERE TIC OXM	12	SU	Riche	10	ō	ō	ō	ŏ	34	ō	ò	37	24	18	20	ŏ	15	23	6	1 4	ŏ	5	ö	56	ŏ	18	-	35	3	38	43	BOP-ERR-SAB	MS2-MJ2
PLS	10	SU	Movenne	34	ō	ō	Ö	ō	19	3	5	39	23	41	17	Ö	16	14	29	10	ō	12	ŏ	26	۱,	9	ö	24	ő	18	42	THO-SAB-ERS	RS1-MJ1
ERE OXM	138	ME-SU	Moyenne	23	1	ō	5	2	39	8	7	45	25	31	17	Ö	17	15	13	19	3	1	1 1	42	3	15	- ö-	27	4	36	34	SAB-BOP-BOJ	MJ2-MJ1
ERE DIE	105	XE-ME	Moyenne	33	12	3	1	15	15	20	8	41	26	16	2	Ö	10	18	4	29	13	5	T ö	48	ő	8	ō	38	2	47	33	BOP-ERR-SAB	MS2-MJ2
TIC RUP	23	HY	Riche	37	9	16	11	11	24	4	15	39	9	43	28	O	12	6	4	2	0	ō	13	35	ō	ē	4	17	21	13	31	THO-SAB-ERS	RC3-RS1-MJ1
ERE CLB	62	XE-ME	Moyenne	38	10	2	6	8	35	15	15	52	27	26	В	0	11	16	21	20	7	0	0	40	Ô	6	1	22	1	41	27	SAB-BOP-ERS	MJ1-MJ2
ERE VIL OXM	17	ME	Moyenne	40	0	0	В	2	49	2	7	43	24	33	9	0	15	10	15	15	4	0	0	30	0	7	0	25	0	45	25	BOJ-SAB-ERS	MJ1-FE3
TIC GRS	10	ME.	Riche	38	5	0	15	6	19	16	9	40	18	10	11	0	8	16	В	16	5	0	0	38	0	14	ō	36	0	32	24	SAB-ERS-BOP	FE3-MJ1
V1L	58	ME	Moyenne	71	12	1	3	18	39	9	32	37	15	20	7	0	9	12	19	9	5	3	0	18	C	5	0	11	2	33	24	ERS*-BOJ-SAB	FE3-MJ1
TIC	7	ME	Riche	64	24	5	0	28	36	5	27	38	20	37	5	0	12	11	18	10	0	0	0	30	0	11	0	8	0	21	23	ERS-THO-BOJ	FE2-FE5
ERP	139	XE-ME	Moyenne	64	14	В	8	22	29	28	47	32	17	12	4	1	10	10	25	22	7	0	0	26	C	6	0	14	3	35	20	ERS-HEG-ERR	FE3-FE6
ERE	274	XE-ME	Moyenne	55	14	5	5	16	35	16	17	42	22	21	9	0	8	10	17	22	7	1	0	31	2	6	1	21	3	37	19	ERS-SAB-ERR	FE3-MJ1
ERE ERP	348	XE-ME	Moyenne	70	14	8	7	23	34	23	34	35	20	19	6	1	7	10	22	19	5	0	0	25	1	5	0	13	0	37	17	ERS	FE3-FE5
ERP VIL	39	XE-ME	Riche	72	7	2	6	18	35	11	46	29	17	11	0	0	5	6	29	8	0	0	6	12	0	3	0	2	0	26	17	ERS-HEG-BOJ	FE3
ERE GRS	13	XE-ME	Moyenne	44	22	B	3	21	20	31	17	35	22	14	14	0	8	6	0	21	6	0	0	34	0	4	0	35	0	36	14	ERS-ERR-BOP	FE3-FE6
ERE TIC RUP	58	SU	Riche	36	9	2	7	1	45	5	5	41	31	32	43	0	θ	4	11	4	0	0	2	27	0	7	1	20	10	23	14	BOJ-FRN-ERS	MJ1-MF1
TIC VIL	13	ME-SU	Riche	70	21	0	3	14	45	0	18	42	16	13	18	0	6	В	15	0	0	0	0	19	0	5	0	24	0	25	14	ERS-BOJ-SAB	FE3-FE2
ERE ERP TIC	50	ME	Moyenne	68	12	9	7	16	46	12	29	33	20	20	13	0	6	7	20	10	0	0	0	24	1	3	2	15	6	33	13	ERS-BOJ	FE3
ERE VIL	93	ME	Riche	67	13	5	5	15	40	16	21	39	25	14	6	0	5	6	18	9	0	0	0	23	0	6	0	17	0	42	11	ERS-ERR-BOJ	FE3
ERE VIL TIC	62 20	ME-SU	Riche	60	16	4	3	13	48	7	18	36	25	11	26	0	3	6	3	6	2	0	0	25	0	7	0	17	5	36	9	ERS-BOJ-ERR	FE3
ERE DIE TIC		ME	Moyenne	47	20	7	0	18	26	13	13	39	22	15	19	0	0_	8	13	17	0	0	0	42	0	5	0	38	14	38	8	ERS-BOP-SAB	FE2-FE3
ERE TIC ERE RUI	12	ME	Riche	68	27	5	13 7	7	41	6	23	23	11	6	17	0	0	5	0	5	0	0	0	41	0	0	0	21	12	42	5	ERS-ERR-BOP	FE3-FE2
ERE RUP	17	ME ME	Moyenne Riche	48 37	7	0	9	17	26 38	4	13	30	8	23	10	0	0	4	0	11	0	0	0	25	0	6	0	29	10	30	4	ERS	FE3-MJ1
		IVIC	Riche	J/	10	<u> </u>	9	!/.	.30	18	12	37	22	24	24	0	0	0	16	12	11	0	0	27	0	4	0	22	0	33	0	BOJ-ERS-SAB	FE3-MJ1
NON-CLASSE	72																																
TOTAL	2047																																

TOTAL 2047

⁽¹⁾ Les données sont exprimées avec l'indice FA | Indice fréquence/abondance = (fréquence relative X couvert moyen) 10]

⁽²⁾ Sommation des indices FA de EPN, EPR, PiG et MEL par groupe d'espèces indicatrices

Les groupes à érable à épis (ERE) et érable de Pennsylvanie (ERP) sont associés aux essences feuillues comme l'érable à sucre, le hêtre et l'ostryer de Virginie. Ces groupes sont tous classés de richesse relative moyenne ou riche.

Analyse des relations entre les groupes d'espèces indicatrices et les essences principales

En analysant ces données et en connaissant les différentes végétations potentielles associées aux essences rencontrées, on peut estimer pour chaque groupe d'espèces indicatrices, 1, 2 ou 3 végétations potentielles.

En présence des groupes à vaccinium, à sphaignes, à aulnes rugueux et quelques autres groupes (DIE PLS, PLS, CLB et RUI GRS), on rencontre une ou l'autre des végétations potentielles suivantes :

RE2: pessière noire à mousses ou à éricacées;

RS2: sapinière à épinette noire;

RS5: sapinière à épinette rouge;

RS1: sapinière à thuya;

RC3: cédrière tourbeuse à sapin;

RE3: pessière noire à sphaignes;

RS3: sapinière à épinette noire et sphaignes;

RP1: pinède blanche ou pinède rouge.

La pessière RE2 est liée aux éricacées et aux mousses sur des sites xériques, mésiques ou subhydriques et se distingue de la sapinière RS2, par la moins grande abondance du sapin et des feuillus intolérants.

La sapinière RS2 occupe des sites un peu plus riches que la pessière RE2, même si on rencontre sensiblement les mêmes groupes d'espèces d'un endroit à l'autre.

La végétation potentielle RS5 est retenue seulement pour distinguer les pessières contenant une plus grande proportion d'épinettes rouges que d'épinettes noires.

Les végétations potentielles RS1 et RC3 distinguent les sites supportant une proportion importante de thuyas (> 10 %).

La sapinière RS3 et la pessière RE3 permettent d'identifier les sites humides (hydriques). La composition en essences de ces végétations potentielles est différente et laisse plus de place aux espèces comme le mélèze et le thuya. Finalement, les pinèdes des RP1 identifient les sites qui supportent une bonne proportion (> 20 %) de pin rouge et de pin blanc.

De richesse relative moyenne ou riche, les groupes d'espèces indicatrices à érable à épis (ERE), à érable de Pennsylvanie (ERP), à tiarelle (TIC) et à viorne alnifoliée (VIL) s'associent aux végétations potentielles suivantes :

MF1: frênaie noire à sapin; MS2: sapinière à bouleau blanc;

MJ2: bétulaie jaune à sapin;

MJ1: bétulaie jaune à sapin et érable à sucre ;

FE2: érablière à tilleul;

FE3: érablière à bouleau jaune;

FE5 : érablière à ostryer de Virginie ;

FE6: érablière à chêne rouge; FC1: chênaie à chêne rouge;

FO1: ormaie à frêne noir;

RT1: prucheraie.

La végétation potentielle MF1 est nécessaire pour identifier les petites superficies humides contenant une proportion importante de frênes noirs. Ces sites sont habituellement semblables à ceux supportant les cédrières (RC3), mais sont plus riches.

La végétation potentielle MS2 est retenue pour distinguer les sapinières trop pauvres ou en mauvaise position topographique ne contenant pas de bouleau jaune. Les groupes à diervilla lonicera (DIE) et ceux à clintonia borealis (CLB) occupent le sous-bois de ces sites qui sont le plus souvent assez secs.

Les végétations potentielles MJ1 et MJ2 sont très fréquentes et regroupent les sapinières contenant une grande proportion de bouleaux jaunes, accompagnés d'érables à sucre dans le cas de la végétation MJ1. Ce sont des sites de richesse moyenne dont le sous-bois contient surtout des groupes d'espèces indicatrices à érable à épis (ERE), habituellement de richesse moyenne.

Pour isoler les différents peuplements contenant une forte proportion d'érables à sucre, en plus de certaines essences indicatrices, les végétations potentielles d'érablières FE2, FE3, FE5 et FE6 sont retenues. En plus de contenir un certain pourcentage de leur essence particulière respective (TIL, OSV et CHR), ces peuplements occupent des sites de richesse moyenne ou riche plus souvent xériquemésique et mésique.

Finalement, pour distinguer quelques peuplements plus rares ayant des caractéristiques spécifiques, les végétations potentielles FC1, FO1, et RT1 permettent d'identifier les plus importants d'entre eux. Ces sites se distinguent surtout pour leur forte proportion des essences qui les nomment, (le chêne rouge pour FC1 (> 10 %), la pruche pour RT1 (> 10 %)), sauf pour FO1 où on retrouve de l'érable argenté ou de l'orme d'Amérique.

Confection d'une clé d'identification

Cette analyse nous permet de construire une clé des végétations potentielles dans laquelle, nous utilisons les données sur les groupes d'espèces indicatrices, les essences et le régime hydrique. Cette clé est ensuite validée sur le terrain et appliquée sur les 2 047 relevés de l'inventaire écologique pour juger de l'importance de chacune des végétations potentielles retenues sur ce territoire.

Comparaison des résultats de l'application de la clé d'identification

Au tableau 7.2, on compare les données sur les végétations potentielles estimées avec celles issues de la clé d'identification. On remarque quelques différences qui proviennent surtout des seuils qui ont été retenus, pour certaines essences permettant de distinguer 2 végétations potentielles, très près l'une de l'autre, exemple : MJ1 et MJ2.

7.2. Description des végétations potentielles

La confection de la clé des végétations potentielles (figure 7.1) a nécessité l'identification de 20 possibilités différentes réparties grossièrement entre les végétations potentielles de couverts feuillu, mélangé et résineux. Les premières s'apparentent surtout aux érablières (FE2, FE3, FE5 et FE6), les secondes aux bétulaies jaune à sapin (MJ1 et MJ2) et les dernières aux sapinières et aux pessières (RB1, RE2, RE3, RS1, RS2 et RS5).

Le tableau 7.3 nous indique que la répartition des végétations potentielles n'est pas uniforme dans tout le territoire. En général, les sapinières et les pessières sont plus fréquentes dans la sous-région septentrionale, tandis que les érablières préfèrent les sous-régions méridionales. On remarque également que l'érablière à bouleau jaune (FE3) est la végétation potentielle la plus importante, sur le territoire avec 21 % des relevés répartis de façon un peu plus importante dans les 2 sous-régions typiques. Les chênaies à chêne rouge (FC1), les érablières à tilleul (FE2) et les érablières à ostryer de Virginie (FE5) sont beaucoup plus fréquences dans les sous-régions méridionales. Pour ce qui est des érablières à chêne rouge (FE6), elles sont surtout présentes (80 % des relevés) dans le sud-ouest du sous-domaine (sous-régions 3a-T et 3a-M).

Mai 1999

Tableau 7.2 : Relation entre les végétations potentielles classifiées et les groupes d'espèces indicatrices du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Groupe d'espèces	Nombre	Régime	Richesse								٧	égét	tion	pote	ntiell	(1)								Indice de la végétation	Végétation potentielle	Végétation potentielle
indicatrices	de relevé	hydrique	relative	RE2	RE3	RS2	RS3	RS5	RB1	RP1	R\$1	RT1	RC3	MF1	MJ1	MJ2	MS2	FC1	FE2	FE3	FE5	FE6	F01	patentielle ⁽²⁾	classifiée	estimée ⁽³⁾
VAM SPS	13	НҮ	Pauvre	38	38		В						8			8								0,19	RE2-RE3	RE3-RS3
VAA PLS	13	ME	Pauvre	31	8	8		15	8	8	В	8			1			8	\vdash					D.34	RE2-RS5	RS2-RS5
VAM PLS	8	ME	Pauvre	63		13					13	1			13		_			_				0.34	RE2	RE2-RS2
VAM OXM	21	ME-SU	Pauvre	33	1	24	10	5	5	14	10	<u> </u>	 -		1		-	l					<u> </u>	0.36	RE2-RS2	RS2
SPS GRS	11	HY	Pauvre		55	1	9	1	1		9	†	18		†	9	_				-			0.56	RE3	RC3-RS3-RS
VAM DIE	25	XE-ME	Pauvre	32		16		20	1	20		†	<u> </u>			4		4				4		0.58	RE2-RS5	MS2-RS2
AUR SPS	43	HY	Pauvre	2		12	42	5	_		5		14	2	2	16								0.66	RS3	RS3-RC3-RE
VAA DIE	38	XE-ME	Pauvre	39		8		16	_	16	11	†	-		3	1		3	3			3		0.70	RE2	MS2-MJ2
AUR RUP SPS	7	НҮ	Pauvre		_	<u> </u>	57	 	$\overline{}$	1		_	14	 	<u> </u>	29						Ť		0.75	RS3-MJ2	RS3-RC3-RS
VAM	11	XE	Pauvre	9	9	<u> </u>	9				9	\vdash	<u> </u>		t	18		45						1.00	FC1-MJ2	RP1
DIE PLS	40	ME	Pauvre	23	T-	13		20	 	5	13	 	<u> </u>	 	5	1		5	5	3	T	10		1.00	RE2-RS5	RS3-RC3-RS
SPS	14	HY	Pauvre	t =	43	 	7	T		 -	7	1	14		<u>†</u>	29		<u> </u>	<u> </u>		T			1.00	RE3-MJ2	RS3-RC3-RE
PLS	10	SU	Moyenne	20	1	20	†	T	1		10	†	20	T	1	10			<u> </u>	20		†		1.50	RE2-RS2	RS1-MJ1
SPS OXM	5	HY	Pauvre	T	20	T	20	!	!		20	†	20	 	1	20		—	l				 -	1,50	RS3-RS1	RS3-RC3-RS
AUR RUP	25	НУ	Riche		1	†	24			1		1	36	4	4	20			4			-	8	2.50	RC3-RS3	RC3-RS1
VAA	11	XE.	Pauvre		1	18		18		27	9				9			_	9	9				3.00	RP1-RS2-RS5	
TIC GRS	10	ME	Riche	t	1		20	1	10			 	1		1	20	20		10	20	1			3.00	MJ2-FE3	MJ1-FE3
AUR	14	ME-SU	Pauvre	7	1	7	7	7			29		\vdash	\vdash		36	7				\vdash			3,43	RS1-MJ2	RS1-RS5
RUIGRS	21	ME	Moyenne	5	14						14				14	5	19	5	5	19				3,74	MS2-FE3	RS2-MS2
CLB	54	XE-ME	Pauvre	2	2	13	 	2	 	2	30	 		 -	2	17	15	4	4	7	2			4.29	RS1-MJ2	MS2-MJ2
TIC RUP	23	HY	Riche		 	1	13	1			9	1	17	9	4	26	4		13	4				4.92	MJ2-RC3	RC3-RS1-MJ
ERE RUP	17	ME	Riche		†	†	6	l			12	 		6	18	24		6	24	6				10.00	MJ2-FE2	FE3-MJ1
ERE RUI	21	ME	Moyenne		1	t	5	1	 	†	10	†		5	 `=	24		<u> </u>	24	33				13.40	FE3-FE2	FE3-MJ1
ERE OXM	138	ME-SU	Moyenne		1		4		\vdash	†	27			1	7	36	15	<u> </u>	1	7		2		23.50	MJ2-RS1	MJ2-MJ1
ERE	274	XE-ME	Movenne	—	+			•			13		1	3	12	19	3		12	26	6	5		> 23.50	FE3-MJ2	FE3-MJ1
ERE CLB	62	XE-ME	Moyenne		1	†					24	 	_	ļ <u>-</u> -	8	27	10		13	13	2	3		> 23.50	MJ2-RS1	MJ1-MJ2
ERE DIE	105	XE-ME	Movenne	-	†	1		1	 	!	10	 			6	40	12	2	18	2	3	В	·	> 23.50	MJ2-FE2	MS2-MJ2
ERE ERP	348	XE-ME	Moyenne		+	 		!		 	13	1	 	1	7	7		0	20	28	11	12		> 23.50	FE3-FE2	FE3-FE5
ERE GRS	13	XE-ME	Moyenne	1	1		-	<u> </u>		<u> </u>	8	 	 	t∸	В	31	8		23	8		15		> 23.50	MJ2-FE2	FE3-FE6
ERP	139	XE-ME	Moyenne	!			1	1		l	4	<u> </u>			6	6	1	4	18	35	9	17	l	> 23.50	FE3-FE2	FE3-FE6
ERP VIL	39	XE-ME	Riche	_				1		<u> </u>	3		T		В		\vdash		10	64	13	3		> 23.50	FE3	FE3
ERE DIE TIC	20	ME	Moyenne	t	 	1	 	-			10		 -	15	10	20			20	20	5			> 23,50	FE2-FE3	FE2-FE3
ERE ERP TIC	50	ME	Moyenne	T	1		-	-	 	 	12	 	1		В	6			14	48	8	4		> 23.50	FE3	FE3
ERE TIC	12	ME	Riche	1		T		1		_		 			17	8			25	42	8			> 23.50	FE3-FE2	FE2-FE3
ERE VIL	93	ME	Riche	1	1	1	1	1	1		5		<u> </u>		14	13	1		12	42	5	8		> 23,50	FE3	FE3
ERE VIL OXM	17	ME	Moyenne	1	1	1		1	T	T -	41	1	1	1	12	29	6	<u> </u>	6	6	1			> 23,50	RS1-MJ2	MJ1-FE3
TIC	7	ME	Riche	1	1	1	1	1			29	1	l	1	1	14	1		14	14	29	<u> </u>	ļ	> 23,50	RS1-FE5	FE2-FE5
VIL	58	ME	Moyenne	1	1	1	1	1	\Box	1	3		T		16	14	2		16	41	7	2	<u> </u>	> 23,50	FE3-MJ1	FE3-MJ1
ERE VIL TIC	62	ME-SU	Riche	1		T	1	1		1	5	1		6	19	21	3		11	31	3		—	> 23.50	FE3-MJ2	FE3
TIC VIL	13	ME-SU	Riche	T	1	1	1	1	1	1		1	T		23	23			38	8	8			> 23,50	FC1-MJ2	FE3-FE2
ERE TIC OXM	12	SU	Riche			T T	1	1	1	1	i	1	t	8	1	67	25	!	T	<u>†</u>	† -	1	\vdash	> 23.50	MJ2-MS2	MS2-MJ2
ERE TIC RUP	58	SU	Riche	l	1		I	1		Ι .	14	t		19	12	41	2		3	9	!	†	<u> </u>	> 23.50	MJ2-MF1	MJ1-MF1
NON-CLASSÉ	72				-	-	-												•	 -			<u> </u>			•
TOTAL	2047	Į																								

⁽¹⁾ Les données sont exprimées en fréquence relative '% des relevés observés dans chacune des végétations potentielles. Le total peut différer légèrement de 100% à cause de l'arrondi.
(2) Indice de végétation potentielle = (RP1+RS1+RC3+MS2+MJ1+MJ2+FE3+FE6) / (RE2+RE3+RS2+RS3)

⁽³⁾ La végétation potentielle estimée provient du tableau 7.1.

Figure 7.1 : Clé d'identification des végétations potentielles du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

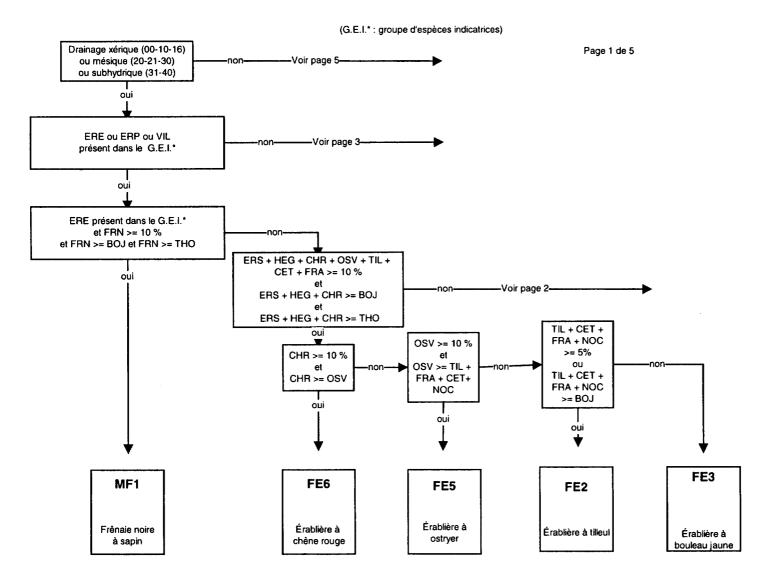


Figure 7.1 (suite)

Page 2 de 5

(G.E.I. : groupe d'espèces indicatrices)

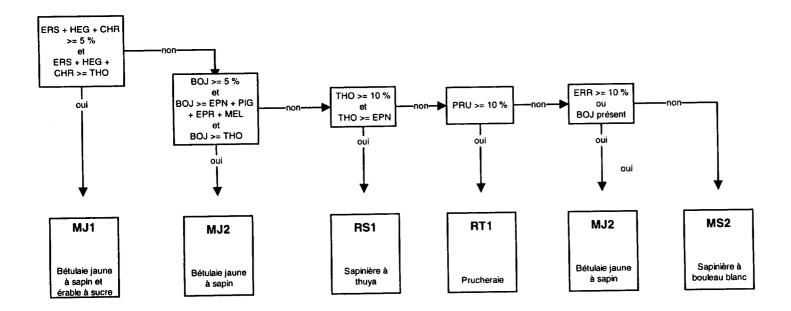


Figure 7.1 (suite)

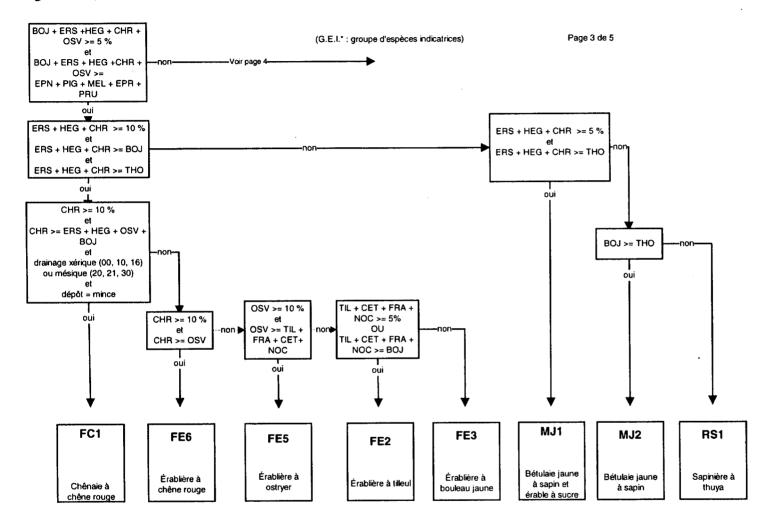


Figure 7.1 (suite)

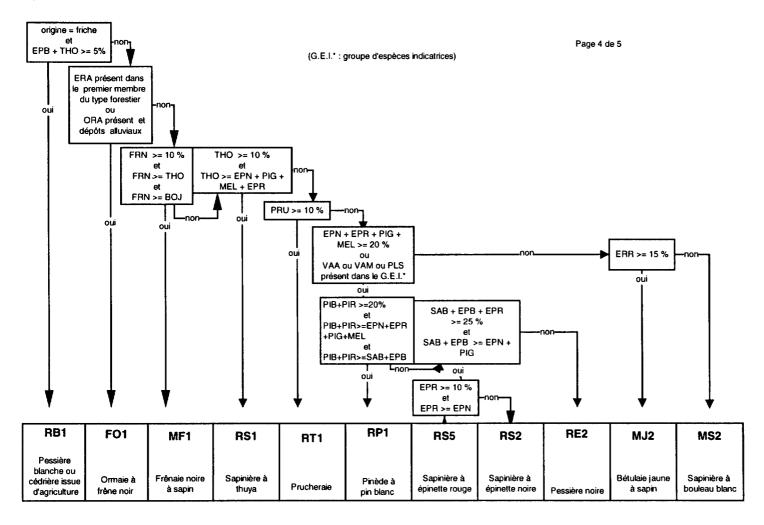


Figure 7.1 (suite)

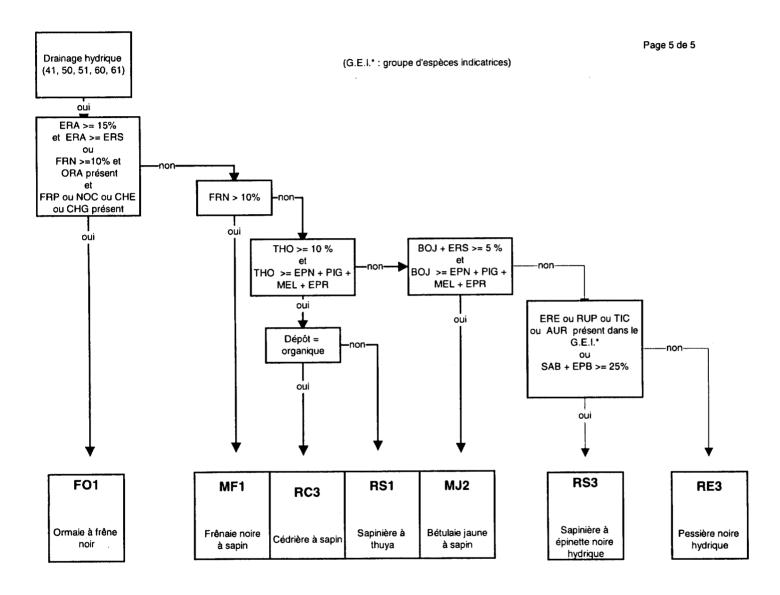


Tableau 7.3 : Liste des végétations potentielles par sous-région et leurs principaux groupes d'espèces indicatrices du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Végétation		Nb. de	Sc	us-rég	ion éco	logique	(1)	
potentielle	Description	rel.	3a-M ⁽²⁾	3a-T	3a-S	3b-М	3b-T	Groupe d'espèces indicatrices
FC1	Chênaie rouge	25	5	7	4	7	2	ERP, VAM
FE2	Erablière a tilleul	265	51	45	10	75	84	ERE ERP, ERE, ERP
FE3	Erablière a bouleau jaune	421	38	85	66	77	155	ERE ERP, ERE, ERP
FE5	Erablière a ostryer	106	26	26	2	30	22	ERE ERP, ERE, ERP
FE6	Erablière a chêne rouge	112	38	50	6	7	11	ERE ERP, ERP, ERE
FO1	Ormaie a frêne noir	3	0	0	0	0	3	AUR RUP
MF1	Frênaie noire a sapin	37	12	8	5	2	10	ERE TIC RUP, ERE
MJ1	Bétulaie jaune a sapin et érable a sucre	159	17	42	18	37	45	ERE, ERE ERP, ERE VIL
MJ2	Bétulaie jaune a sapin	341	20	84	131	32	74	ERE, ERE OXM, ERE DIE
MS2	Sapinière a bouleau blanc	79	8	17	29	7	18	ERE OXM, ERE DIE, ERE
RB1	Pessière blanche ou cédrière issue d'agriculture	3	1	0	0	0	2	VAM OXM, VAA PLS, TIC GRS
RC3	Cédrière tourbeuse a sapin	29	3	2	5	8	11	AUR RUP, AUR SPS, TIC RUP
RE2	Pessière noire a mousses ou a éricacées	63	2	13	35	3	10	VAA DIE, DIE PLS, VAM DIE
RE3	Pessière noire a sphaignes	24	1	4	7	3	9	SPS GRS, SPS, VAM SPS
RP1	Pinède blanche ou pinède rouge	21	0	9	10	0	2	VAA DIE, VAM DIE
RS1	Sapinière a thuya	242	9	57	119	30	27	ERE ERP, ERE OXM, ERE
RS2	Sapinière a épinette noire	36	4	14	12	0	6	CLB, VAM OXM, DIE PLS
RS3	Sapinière a épinette noire et sphaignes	48	0	9	19	7	13	AUR SPS, AUR RUP, ERE OXM
RS5	Sapinière a épinette rouge	28	1	1	18	0	8	DIE PLS, VAA DIE, VAM DIE
RT1	Prucheraie	5	0	1	1	1	2	ERE ERP
	TOTAL	2047	236	474	497	326	514	

(1) Les données sont exprimées en nombre de relevés

__-T: Typique

__-M : Méridionale

_-S : Septentrionale

Dans le cas des végétations potentielles de couvert mélangé, la bétulaie jaune à sapin (MJ2) qui est deuxième (17 % des relevés) en importance sur le territoire, est beaucoup plus fréquente dans la sous-région septentrionale 3a-S. La bétulaie jaune à sapin et érable à sucre y est au contraire moins fréquente et plus abondante dans la sous-région 3b-M. La frênaie noire à sapin (MF1) qui affectionne les milieux humides et riches, semble plus fréquente dans la sous-région méridionale 3a-M. Finalement, la végétation potentielle de la sapinière à bouleau blanc (MS2) est aussi plus abondante dans la sous-région septentrionale 3a-S.

Les végétations potentielles résineuses sont les troisièmes en importance avec 24 % de tous les relevés. La sapinière à thuya est de loin la plus importante sur tout le territoire avec 12 % des relevés dont près de la moitié sont répertoriés dans la sous-région 3a-S. Cette distribution est également vraie pour la plupart des autres végétations potentielles résineuses (RE2, RS3 et RS5). Les pinèdes blanches et les pinèdes rouges n'ont pas été répertoriées dans aucune des sous-régions méridionales, probablement à cause du fait qu'elles sont surtout positionnées sur des escarpements dans ces 2 sous-régions. Les figures 7.2 à 7.7 nous montrent de quelle façon se distribuent les différentes végétations potentielles sur tout le territoire du sous-domaine de l'érablière à bouleau jaune de l'ouest.

Le tableau 7.4 met en évidence les liens entre les origines, les essences forestières et les végétations potentielles. Pour plus de 50 % des relevés, l'origine est non décelable et probablement naturelle. Les végétations potentielles résineuses sont toutefois beaucoup plus souvent d'origine de brûlis, sauf celles de milieu hydrique (RE3, RS3 et RC3). Les origines de coupes totales sont aussi fréquentes pour les végétations potentielles feuillues que celles de couvert résineux. Les végétations potentielles liées au chêne rouge (FC1 et FE6) sont une fois sur deux d'origine de brûlis, probablement parce que cette essence préfère le plus souvent, des hautes terres rocailleuses plus susceptibles aux passages des feux.

Le tableau 7.5 nous informe sur l'évolution des différentes végétations potentielles sur ce territoire, en indiquant leur fréquence par stade évolutif. La très grande majorité des relevés a été effectuée dans des peuplements au stade de stabilité (5) et de faciès (4), ce qui indique que ces peuplement sont peu perturbés, y compris ceux dominés par les essences résineuses.

Mai 1999

Figure 7.2 : Végétation potentielle FE2 (érablière à tilleul) pour le sous-domaine de l'érablière à bouleau jaune de l'ouest

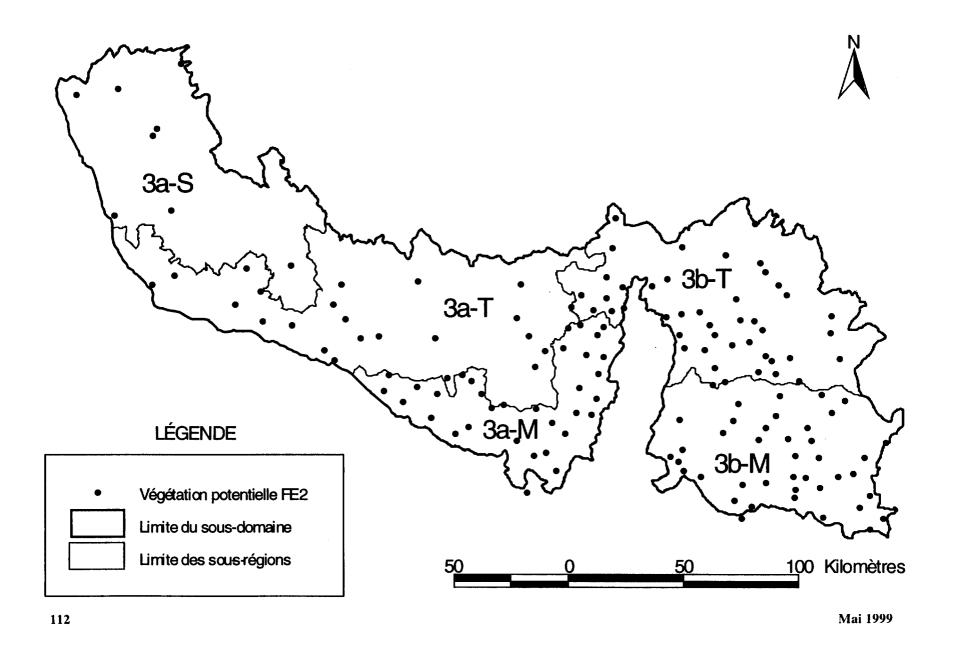


Figure 7.3 : Végétation potentielle FE3 (érablière à bouleau jaune) pour le sous-domaine de l'érablière à bouleau jaune de l'ouest

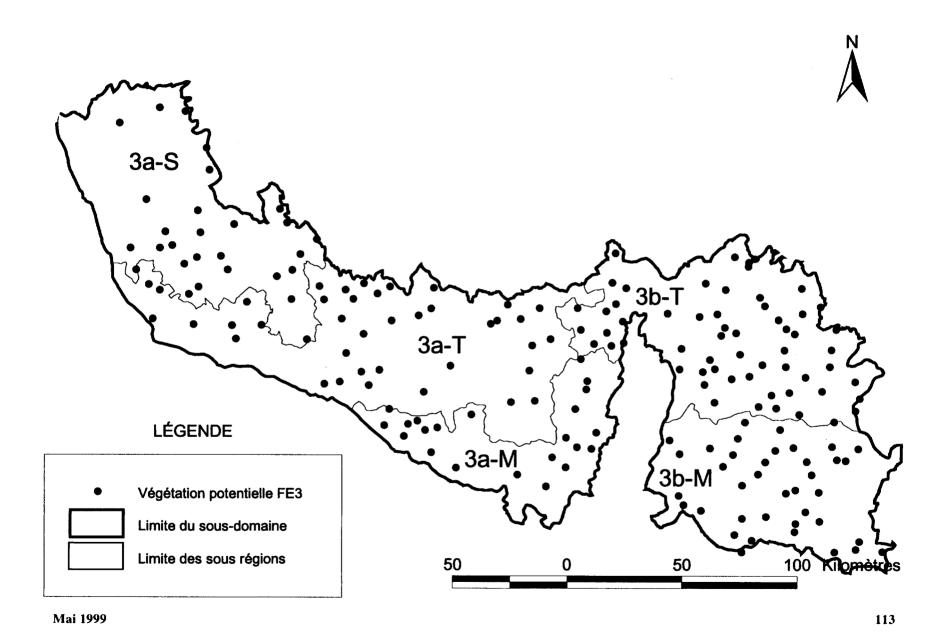


Figure 7.4 : Végétation potentielle FE6 (érablière à chêne rouge) pour le sous-domaine de l'érablière à bouleau jaune de l'ouest

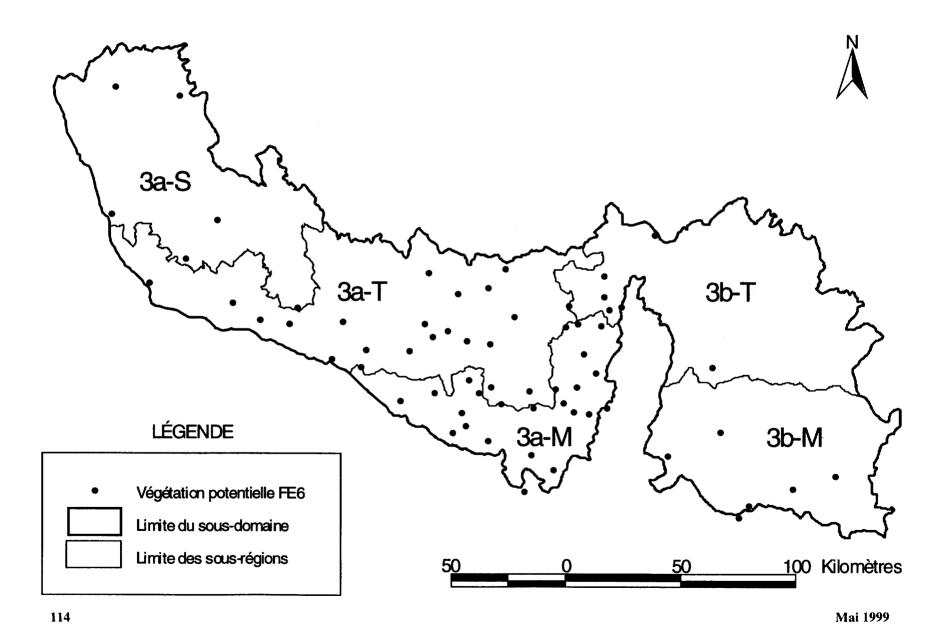


Figure 7.5 : Végétation potentielle MJ2 (bétulaie jaune à sapin) pour le sous-domaine de l'érablière à bouleau jaune de l'ouest

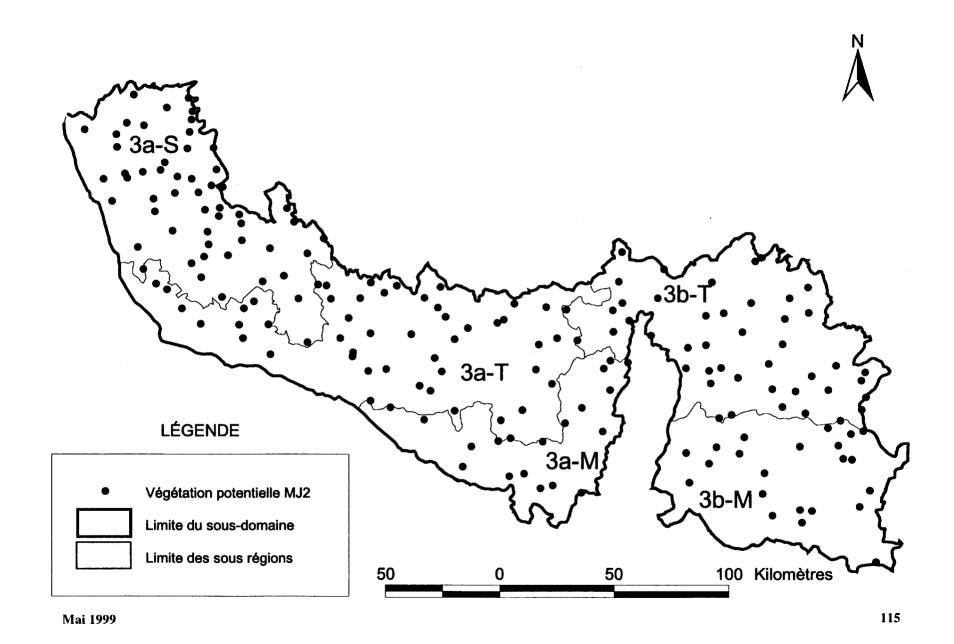


Figure 7.6 : Végétation potentielle RE2 (pessière noire à mousses ou à éricacées) pour le sous-domaine de l'érablière à bouleau jaune de l'ouest

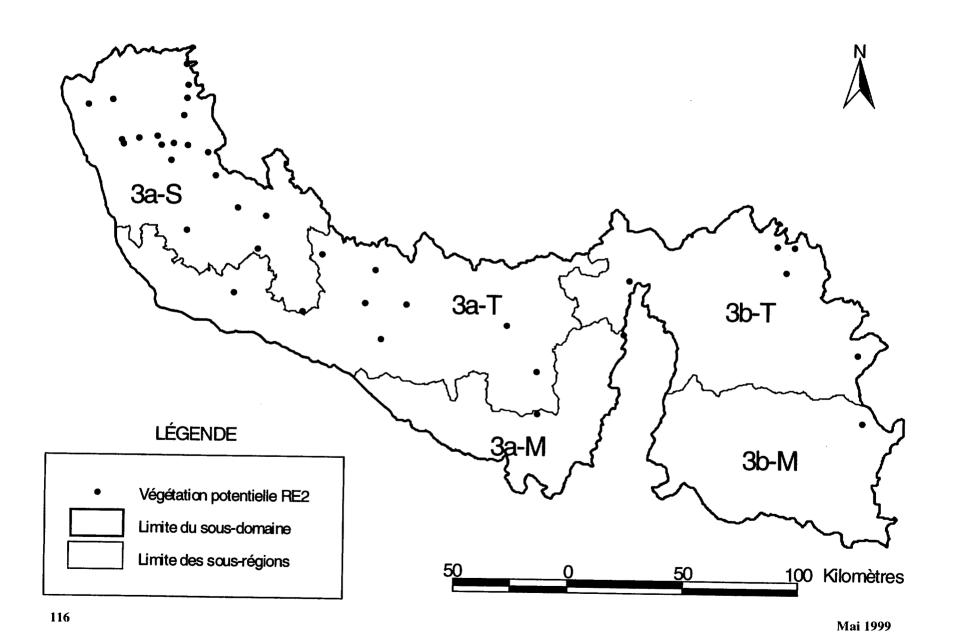


Figure 7.7 : Végétation potentielle RS1 (sapinière à thuya) pour le sous-domaine de l'érablière à bouleau jaune de l'ouest

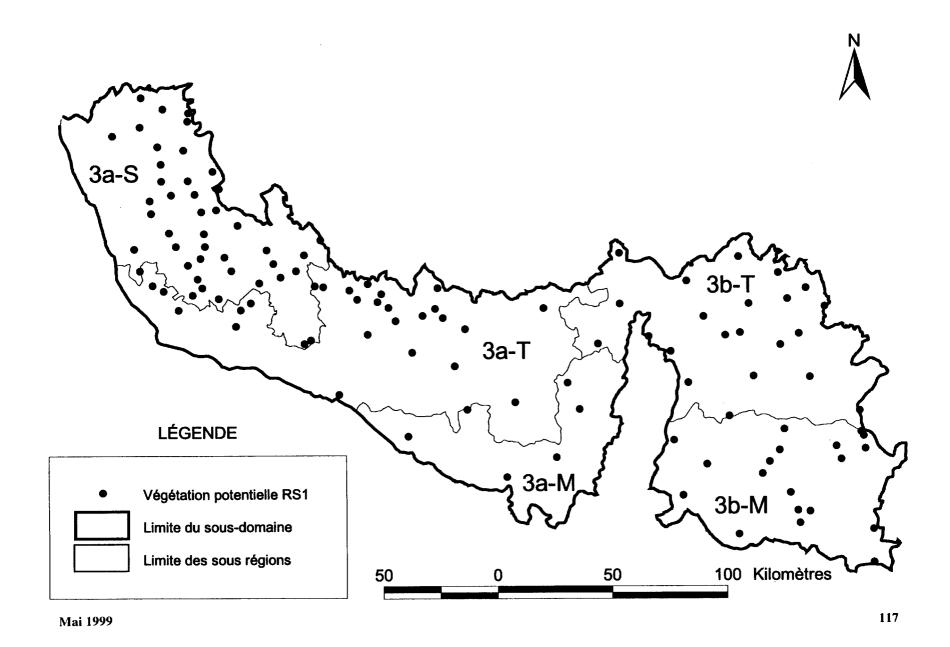


Tableau 7.4 : Relation entre les végétations potentielles, les essences et les origines du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Végétation	Nb. de													Es	senc	(1)													Essences		Origi	ne é	colog	ique ⁽²⁾	
potentielle	rel.	ERS	TIL	FRA	CET	osv	BOJ	CHR	HEG	SAB	EP8	THO	FRN	FRP	EPN	EPR	PRU	PIB	PIR	PIG	MEL	вор	BOG	SOA	SOD	PET	PEB	ERR	dominantes	₿R	CHT	СТ	ES F	R NA	P
RE2	63	1	0	0	1	0	3	3	2	31	12	12	0	0	48	21	0	23	11	33	4	39	0	15	0	25	0	32	EPN-BOP-PIG	37	0	10	2 3	11	0
RE3	24	0	0	0	0	0	7	0	0	24	10	19	5	0	64	0	0	11	2	8	33	17	0	7	2	10	0	10	EPN-MEL	1	D	6	0 0	17	0
RS3	48	4	0	0	0	1	10	8	1	40	10	15	5	0	50	17	В	14	4	0	17	34	0	18	2	22	9	26	EPN-SAB-BOP	9	0	9	0 1	29	0
RS5	28	4	0	0	0	0	3	3	0	43	20	13	0	0	8	59	0	24	10	5	3	52	0	11	0	32	0	39	EPR-BOP-SAB	16	0	5	2 [5	0
RS2	36	8	0	0	0	2	10	13	2	61	29	16	7	0	42	9	0	29	11	10	8	45	0	16	0	26	2	36	SAB-BOP-EPN	18	0	5	0 0	13	0
RP1	21	0	0	0	0	0	5	12	3	37	16	12	0	0	36	26	2	54	49	4	0	35	0	14	0	27	0	43	PIB-PIR-ERR	14	0	0	0 0	7	0
RC3	29	7	0	0	0	0	12	2	2	48	17	61	22	0	29	14	17	6	0	0	21	20	0	8	4	8	11	19	THO-SAB	1	0	4	0 0	24	D
MS2	79	5	0	1	4	0	3	3	3	46	29	11	6	0	18	17	2	26	15	7	0	44	4	10	1	42	5	18	SAB-BOP-PET	35	0	13	3 5	20	3
MJ2	341	15	4	1	2	2	36	4	6	45	25	24	22	1	15	15	16	20	9	1	1	42	0	11	1	23	1_	42	SAB-BOP-ERR	102	0	54	3 (182	0
RT1	5	9	٥	0	0	0	17	0	4	29	13	23	0	0	0	33	67	37	В	0	0	29	0	G	0	0	0	27	PRU-PIB-EPR	0	0	1	0 0	4	0
FC1	25	16	3	8	5	15	4	58	8	39	21	5	0	0	17	14	6	44	22	0	0	25	0	8	0	7	θ	44	CHR-PIB-ERR	14	0	2	0 0	9	0
RS1	242	31	7	2	1_	4	39	В	8	46	25	53	9	0	11	16	26	18	6	0	2	36	1_	9	0	17	6	34	THO-SAB-BOJ	45	0	28	0 4	165	0
RB1	3	13	0	10	24	0	0	6	0	46	36	0	0	0	0	25	0	0	0	0	0	45	0	15	0	45	0	21	SAB-BOP-PET	0	0	0	0 3	0	0
MJ1	159	35	10	3	3	3	52	10	13	41	25	10	12	0	9	14	22	18	4	1	0	30	0	8	1_	21	6	43	BOJ-ERR-SAB	43	0	21	0 2	93	a
FE6	112	52	12	11	6	26	21	53	34	42	26	5	5	2	10	9	15	30	11	2	0	27	1	7	0	16	0	47	CHR-ERS-ERR	44	0	7	0 0	61	0
MF1	37	46	15	0	5	14	22	В	7	45	28	10	49	0	16	0	8	11	0	0	2	31	0	В	0	20	14	30	FRN-ERS-SAB	8	1	8	0 0	20	0
FE3	421	76	5	1	2	10	39	9	36	32	17	Β	6	0	3	8	19	11	3	0	2	19	0	4	1	16	2	33	ERS-BOJ-ERR	64	0	57	0 1	297	2
FE2	265	78	27	12	13	20	19	12	37	30	15	5	5	0	2	4	10	17	4	0	0	28	2	2	1	24	3	32	ERS-HEG-ERR	78	0	41	0 3	142	1
FE5	106	85	21	9	7	49	24	25	42	27	16	4	2	0	0	4	9	10	0	0	0	19	0	2	0	12	4	27	ERS-OSV-HEG	25	٥	9	0 0	72	0
FO1	3	٥	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	D	0	0	0	0	0	0	0	0	FRN	0	0	0	0 0) 3	0
TOTAL	2047						-																						Total	554	1	280	10 2	2 117	4 6

⁽fréquence relative X couvert moyen) 1/2

[🕰] Pour les origines écologiques les données sont exprimées en nombre de relevés.

Tableau 7.5 : Liste des végétations potentielles par stade évolutif du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Végétation	Description	Nb. de			Stade évolutif ⁽¹⁾		
potentielle	Description	rel.	Pionnier(1)	Lumière(2)	Intermédiaire(3)	Faciès(4)	Stabilité(5)
FC1	Chênaie rouge	25		1	2	9	13
FE2	Erablière a tilleul	265	2	11	60	53	139
FE3	Érablière à bouleau jaune	421		11	43	128	239
FE5	Erablière a ostryer	106			8	16	82
FE6	Erablière a chêne rouge	112		3	25	36	48
FO1	Ormaie a frêne noir	3				1	2
MF1	Frênaie noire a sapin	37	1		13	9	14
MJ1	Bétulaie jaune a sapin et érable a sucre	159	2	11	31	58	57
MJ2	Bétulaie jaune a sapin	341	7	58	77	85	114
MS2	Sapinière a bouleau blanc	79	6	15	23	14	21
RB1	Pessière blanche ou cédrière issue d'agriculture	3			2	1	
RC3	Cédrière tourbeuse a sapin	29				2	27
RE2	Pessière noire a mousses ou a éricacées	63	4	11	11	15	22
RE3	Pessière noire a sphaignes	24	3	2	2	4	13
RP1	Pinède blanche ou pinède rouge	21			2	4	15
RS1	Sapinière a thuya	242	1	7	45	60	129
RS2	Sapinière a épinette noire	36		6	5	13	12
RS3	Sapinière a épinette noire et sphaignes	48	6	5	3	12	22
RS5	Sapinière a épinette rouge	28		5	4	9	10
RT1	Prucheraie	5				2	3
	Total	2047	32	146	356	531	982

(1) Les données sont exprimées en nombre de relevés

L'annexe 4 nous fournit des informations sur les différents types forestiers les plus importants, pour chaque végétation potentielle à différents stades évolutifs. En général, les sites liés aux végétations potentielles de couvert feuillu (FC1, FE2, FE3, FE5 et FE6), supportent des peuplements aux stades de faciès ou de stabilité (4, 5) dominés par l'érable à sucre, le bouleau jaune et le hêtre. On rencontre également quelques peuplements au stade intermédiaire (3) et de lumière (2) où les peupliers de faux-tremble et à grandes dents occupent le couvert dans les érablières à tilleul (FE2) et les érablières à chêne rouge (FE6), et où le bouleau jaune et l'érable rouge dominent dans les érablières à bouleau jaune et les érablières à ostryer de Virginie. Malgré que nous ayons très peu de relevés dans les peuplements au stade pionnier (1); nous savons que les espèces comme le framboisier et l'épibobe envahissent le territoire après une coupe totale ou un feu, pour faire place à l'érable à épis, l'érable de Pennsylvanie et le cerisier de Pennsylvanie, avant de se faire remplacer à leur tout par les feuillus intolérants au stade de lumière (2).

Les végétations potentielles de couvert mélangé (MF1, MJ1, MJ2 et MS2) présentent un portrait un peu moins homogène que les précédentes. Les sites à frênaie noire (MF1) sont occupés le plus souvent, par des peuplements aux stades 4 et 5, où toutes sortes d'essences en plus du frêne noir peuvent dominer le couvert (ERS, EPN, SAB). Au stade intermédiaire (3), le bouleau à papier ou le peuplier baumier peut être dominant et remplacer l'aulne rugueux qui s'installe souvent sur ces sites après une coupe totale. Les sites à bétulaie jaune à sapin (MJ1 et MJ2) sont également occupés par des peuplements de fin de succession dans la majorité des cas. Aux stades 4 et 5, les couverts sont le plus souvent dominés par le bouleau jaune, le sapin ou le pin blanc. Au stade intermédiaire et de lumière, on rencontre le bouleau à papier, le peuplier faux-tremble et l'érable rouge, tandis qu'au stade pionnier, l'érable à épis est l'espèce la plus fréquemment observée. Finalement, la végétation potentielle de la sapinière à bouleau blanc (MS2) se rencontre sur des sites où les perturbations d'importance (coupe totale) sont plus fréquentes. Une bonne proportion des peuplements qu'on y rencontre est au stade intermédiaire et dominée par le bouleau blanc et le peuplier faux tremble. Aux stades 4 et 5, les résineux comme le sapin ou le pin blanc occupent une place plus importante. Au stade pionnier, le cerisier de Pennsylvanie et l'aulne rugueux sont les espèces les plus envahissantes sur ces sites.

Pour finir, les sites de végétation potentielle résineuse (RB1, RC3, RE2, RE3, RP1, RS1, RS2, RS3, RS5 et RT2) présentent un portrait assez différent selon le contenu en essences. Les sites de cédrière tourbeuse (RC3) supportent presque exclusivement des peuplements de fin de succession (5), où dominent le thuya et le sapin. Sur les autres sites hydriques, comme ceux de la végétation potentielle de la pessière noire à sphaignes, on rencontre surtout des peuplements de fin de succession (5), composés d'épinettes noires, mais aussi de peuplements de transition (2,3) dominés par le mélèze et l'épinette noire et quelques fois d'une

strate arbustive au stade pionnier (1) composée d'aulne rugueux et de némopanthe mucroné. Les sites à sapinière à épinette noire et sphaignes (RS3) supportent sensiblement les mêmes peuplements et dans les mêmes proportions que ceux à RE3, à la différence que le sapin est plus abondant au stade final, et que le peuplier faux tremble ainsi que le bouleau à papier occupent une plus grande place dans les peuplements aux stades de début de succession (1, 2, 3). Sur les sites mésiques propices à la pessière noire à mousses ou à éricacées, les peuplements au stade de stabilité (5) sont les plus fréquents et l'épinette noire y domine largement, accompagnée du sapin ou du pin blanc. Dans les peuplements aux stades de transition 2 et 3, on rencontre le bouleau blanc et l'érable rouge, ou sur les dépôts de texture grossière, le pin gris et l'épinette noire. Au stade pionnier, seul les éricacées, les mousses et quelques petits arbustes (diervilla lonicera) forment le couvert. Les sites à sapinière à épinette noire (RS2) et sapinière à épinette rouge (RS5) présentent sensiblement le même portrait que ceux de la végétation RE2, à la différence que les essences qui dominent les peuplements de fin de succession, correspondent aux végétations potentielles respectives (SAB, EPB, EPR) et que le pin gris est pratiquement absent des peuplements de transition.

Les sites propices aux végétations potentielles de la pinède à pin blanc ou à pin rouge (RP1) et de la prucheraie (RT1) sont surtout occupés par des peuplements en fin de succession où on trouve les essences typiques de ces formations.

Finalement, les sites susceptibles de voir évoluer la végétation de la sapinière à thuya (RS1) sont surtout occupés par des peuplements de fin de succession dont le couvert peut varier considérablement. On peut observer des proportions importantes d'érable à sucre, de bouleau jaune, de pruche et autres résineux, toujours accompagnés de thuya. Dans les peuplements de transitions (2,3), le bouleau à papier et l'érable rouge dominent souvent le couvert en compagnie de l'érable à épis et du peuplier faux tremble.

Mai 1999 121

8. TYPES ÉCOLOGIQUES

8.1. Détermination et reconnaissance des types écologiques

Dans le chapitre précédent, nous avons identifié et défini les végétations potentielles que nous pouvons rencontrer sur le territoire de l'érablière à bouleau jaune de l'ouest. Celles-ci peuvent s'observer sur une grande variété de sites. Le type écologique est justement le résultat de la relation entre la végétation potentielle et les caractéristiques du milieu où on la trouve. Pour chaque végétation potentielle, on aura autant de types écologiques que de catégories de sites où on peut la trouver. De plus, certains groupes d'espèces indicatrices révélant des conditions très particulières du milieu physique feront également partie de l'analyse pour déterminer le type écologique.

Le tableau 8.1 permet de faire cette analyse, qui, dans ce cas-ci, mène à l'identification de 51 types écologiques qui comprennent, dans certains cas, des regroupements pour éviter la formation de types jugés trop peu différents les uns des autres.

Cette démarche nous amène à réaliser une clé d'identification des types écologiques (figure 8.1) qui découle des trois autres outils développés précédemment soit, la clé du type forestier, la clé de végétation potentielle et la grille des milieux physiques. La figure 8.2 décrit entièrement la démarche que l'on doit faire sur le terrain pour identifier le type écologique.

8.2. Présentation des types écologiques

Les 51 types écologiques retenus dans le sous-domaine sont présentés au tableau 8.2. L'importance de chacun des types est mise en évidence pour chacune des cinq sous-régions écologiques du territoire. L'inventaire écologique n'ayant pas permis de sonder toutes les catégories de sites possibles, certains types écologiques non décrits dans ce rapport peuvent être rencontrés sur le terrain.

L'érablière à bouleau jaune sur dépôt mince à épais de texture moyenne et de drainage mésique (FE32) et l'érablière à tilleul sur dépôt mince à épais de texture moyenne et de drainage mésique (FE22) sont les deux types écologiques les plus fréquents avec chacun 9.5 % des relevés. Le type FE22 est plus abondant dans les sous-régions méridionales 3a-M et 3b-M tandis que le type FE32 est un peu plus fréquent dans la sous-région 3b-T et un peu moins dans les sous-régions 3a-S et 3c-M. La bétulaie jaune à sapin mésique (MJ22) est le troisième type en importance avec 6 % des relevés qui sont surtout concentrés dans la sous-région septentrionale 3a-S et qui sont très peu fréquents dans les sous-régions méridionales (3a-M, 3b-M). L'érablière à ostryer sur dépôt mince à épais, de texture moyenne et de drainage

Tableau 8.1 : Relation entre les groupes d'espèces indicatrices, les végétations potentielles et les types de milieu physique dans le but de former les types écologiques du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Végétation	Groupe d'esp.	Nb. De										Туј	e de n	nilieu p	hysiqu	e ⁽¹⁾									
potentielle	indicatrices	rel.	XM ⁽²⁾	хо	MM	SM	XEG	XEGP	MEG	MEGP	XEM	XEMP	MO	MEM	MEMP	SEG	SEGP	SEM	SEMP	MEF	SEF	HEM	HM	SO	но
	CLB	2			2					<u> </u>		<u> </u>					<u>.</u>					ļ		ļ	ļ
	DIE PLS	2	1		1					<u> </u>									į			Į			įl
	ERE	2			2			<u>]</u>	<u> </u>						!	ļ			ļ						ļl
	ERE DIE	2	1		1		. 	<u> </u>	i	<u>.l</u>					ļ				ļ			ļ			ļl
	ERE ERP	1			1			<u> </u>	į	į	ļ	į	· · · · · · · · · · · · · · · · · · ·	ļ	<u></u>	į	ļ		Ļ		ļ			ļ	į
FC1	ERP	5	1	FC10	4			<u>.</u>	i	<u>.i</u>							.	ļ	ļ	ļ					ļ
	RUI GRS	1	1						į	<u></u>	ļ	ļ		ļ			ļ	ļ				ļ		ķ	
	VAA DIE	1			11	ļ. <u></u>		ļ	į	<u> </u>	Į	Ļ		ļ		Į	ļ	ļ	ļ		ļ	ļ		ļ	ļ
	VAA PLS	11	1	<u>į</u>	<u></u>			į												ļ	ļ				
	VAM	5	2	į	3		<i></i>	į											ļ						
	VAM DIE	1			1					. 	.			.		į	į	į		į	·	ļ	ļ	ļ	
	X01	1	11						į			ļ			ļ	ļ		<u> </u>		<u> </u>	ļ	ļ			ļ
	ERE RUP	1	1	<u> </u>	<u>. </u>	Ļ		<u> </u>	-		-	: 		:	:	<u> </u>		:		-		!	-		
	CLB	2	1]	ļ	<u> </u>	.	į				I		2 2 22				ļ				.	ļ		
	DIE PLS	2		Ĭ				<u>.i</u>	<u>.</u>		<u>.</u>	ļ		2	į			<u>.</u>		<u></u>	ļ	ļ	ļ	į	<u> </u>
	ERE	33	1 1		5 3		.	<u></u>	11	2	į			22			. 	2	ļ	į	ļ	ļ	į	Ļ	
	ERE CLB	В	I	<u>.</u>	<u>j</u> 3	<u> </u>	.	<u>.</u>						4 18				1	·				;	ļ	
	ERE DIE	19	1	į	<u> </u>	į		. .	ļ <u>.</u>		ļ _.	ļ	ļ. 	18			.	ļ <u>ļ</u>	.			••••••			ļ
	ERE ERP	69	11		12			.]	2	1	11		ļ	51	ļ	ļ		ļ <u>1</u>	ļ	ļ	·			ļ	†
	ERE GRS	3		ļ	2	. 			<u> </u>		ļ			1	ļ		•	ļ		ļ	. 	· 	ļ	<u> </u>	·····
	ERE OXM	2		<u> </u>				. 					ļ	2	.									<u> </u>	
i i	ERE RUI	5			i	ļ			EE34	-i			FE22					<u> </u>	÷	†	· †		<u> </u>	†	
	ERE VIL	11		FE20			ļ	. 	FE21	ļ		ļ	FEZZ	ļ!		·····	÷			·}			ļ	·	·
i	ERE VIL OXM	1_1_		Ļ	<u>1</u>	ļ	ļ							10					· ·····	· <u></u>		+	•	· · · · · · · · · · · · · · · · · · ·	
Į.	ERP	25			7				į		ļ		 	18 4	<u> </u>		· · · · · · · · · · · · · · · · · · · ·	·	·	<u> </u>	·†·····	•••••		1	†
	ERP VIL	4						· · · · · · · · · · · · · · · · · · ·	ļ	· · · · · · · · · ·		·}	<u>.</u>	1			· · · · · · · · ·			ţ	†	· •			1
FE2	RUI GRS	1-1				ļ		· ·····				·	!	1 1	·†·····	†····				†	†			1	1
	VAA DIE	 	ļ		·		· · · · · · · · · · · · · · · · · · ·		•••••••	·· ······				1	· i				1	1	1			1	
	VIL	9	·····	·	·		ł	·!·····	· 		· · · · · · · · · · · · · · · · · · ·			8		1	•	1					1		
1	X01	31		· ·····	3	-	·····	· · · · · · · · · · · · · · · · · · ·		1	· • · · · · · · · · · · · · · · · · · ·			27		1		1				1	1	1	
!	ERE DIE TIC	4		! 	; 	•	!				Ť	:	:		:	•	1	1		1					
	ERE ERP TIC	 7 -	·····			·	·†		1		†···	·†·····	†····	4				1					1		-
	ERE TIC	1 3		· -	· 	· † · · · · ' · · · ·	÷		1		1		·····	3	1	FE25	1	1		1					
	ERE VIL TIC	1 7					••••••••		1	+	•		İ	4	†			2]
	TIC	1-1	 				·		· †		· · · · · · ·			1			1			1		1	Ĭ	1	1
	TIC GRS	+ †	†	·	· † · · · · · · ·	†	†		†		1		İ	1		1		I		1			1	1	
	TIC VIL	- ' 5	†····	· • · · · · · · · · · · · · · · · · · ·	2		······	1	1					3		I			1	1]	1		1	
	ERE RUP	1 4	†·····	1	· -	1	1	1	:	1		1	1	4	1		1	.]	1	.]					
1	ERE TIC RUP	1 - 2	1	1		1	1		1	1	1	1	1	3		1	.1						<u> </u>		
	TIC RUP	3	1	1	1	1		1						3									.ļ		
ŀ	AUR RUP	1 1	1	1		1	1	1	1					1				1					<u>:</u>		

Tableau 8.1 (suite)

Groupe d'esp	Nb. De										Туј	e de n	nitieu p	hysique	e ⁽¹⁾									
Indicatrices		XM ⁽²⁾	ХO	MM	SM	XEG	XEGP	MEG	MEGP	XEM	XEMP	MO	MEM	MEMP	SEG	SEGP	SEM	SEMP	MEF	SEF	нем	нм	SO	но
CLB	4								<u> </u>				3				1							
DIE PLS	1								<u>]</u>				1			ļ				ļ				
ERE	70	2		9	1			2	<u>j</u>	1			47	2		į	6	ļ						
ERE CLB	8			3				2	<u> </u>			,	3											
ERE DIE	2		•••••										2											
ERE ERP	99			9				2	2	2			81		.	į	3	ļ		ļ				
	1]	<u>.</u>			<u>.</u>	įl		į	1	į			į		į	
	9			2					1				6	i				İ		ļ	<u>!</u>			
	7			1							l		6	[
	39				1	l			2				34	<u>.</u>		į	2			į	į		į	į
	1						[;					1		l					<u> </u>	<u></u>			ļ
	48	2	FE30	6	1		FE31	1				FE32	33				6	j	<u> </u>	<u>.</u>	<u>j</u>	<u> </u>	<u>j</u>	<u>į</u>
				1				1					20				3	<u> </u>		<u>.</u>	<u>į</u>			<u></u>
				1	i				1				1								İ	<u> </u>	<u> </u>	İ
			• • • • • • • • • • • • • • • • • • • •	1 1			; :		1				2		l		1						<u> </u>	1
	1			1	†				1				1							<u>.</u>	1	<u>.</u>	<u>.</u>	<u>.</u>
	24			3	····			1	1				19		· · · · · · · · · · · · · · · · · · ·		1				<u> </u>	<u>j</u>	<u>]</u>	<u>.</u>
				·····		1		1		· · · · · · · · · · · · · · · · · · ·			12								<u> </u>	İ		
	+			1	:	!	:			:	:		3											<u>J</u>
		1		÷;		· ! · · · · · · · · · · · · · · · · · · ·		1		:	•	• • • • • • • • • • • • • • • • • • • •	18				2	1			1]	<u>.</u>	<u>j</u>
				·····		·							4]		1	1				l	Ì	.]
				2	·····	†····			1				13	1			4							<u>.</u>
	1 1		<u> </u>	1	‡·····	· ! ······				<u> </u>		• • • • • • • • • • • • • • • • • • • •	1	1	FE35	1		1		1	1]		
	 '-	ł		†	<u> </u>	†	†····	! ·····	· 				2	i	:		[T	
	+	ł		<u> </u>		÷	†····			·			1 7	İ			i				1			Ī
	╂╌╁╌	ł		·	· · · · · · · · · · · · · · · · · · ·		· ·····	†····	·	†····	<u> </u>		1 1	1	†	1	1	1		1	1		1	1
	1 -	ł	·	·	· !··· ···	· 	····		· † · · · · · · · ·	†	†····	• · · · · · · · · · · · · · · · · · · ·	1	†····			2		1	1	1	1]	ì
	1 3		<u> </u>	÷	†	· 	∤!	· !		· · · · · · · · ·	·		· · · · · · · · · · · · · · · · · · ·	·	1		1			1	1		·:·······	1
	Indicatrices CLB DIE PLS ERE ERE CLB ERE DIE ERE DIE ERE GRS ERE OXM ERE VIL ERE VIL ERE VIL PLS RUI GRS VAA VIL X01 ERE DIE TIC ERE ERP TIC ERE RUI TIC TIC GRS TIC VIL ERE RUP ERE RUP ERE RUP ERE RUP ERE RUP ERE RUP ERE RUP ERE RUP ERE RUP ERE TIC RUP	Indicatrices rel.	Indicatrices rel. xM 2	Indicatrices Fel. XM 2 XO	Indicatrices rel. xm 2 x0 mm	Indicatrices rel. xm(2) x0 mm Sm	Indicatrices rel. xm 2) x0 mm sm xEG	Indicatrices	Note	Indicatrices	Indicatrices	Indicatrices Fel. XM 2 XO MM SM XEG XEGP MEG MEGP XEM XEMP	Indicatrices Fel. XM 2 XO MM SM XEG XEGP MEG MEGP XEM XEMP MO	Indicatrices Tel. XM 2 XO MM SM XEG XEGP MEG MEGP XEM XEMP MO MEM	Indicatrices Fel. XM 2 XO MM SM XEG XEGP MEG MEGP XEM XEMP MO MEM MEMP	Indicatrices Indi	Indicatrices Fel. XM 2 XO MM SM XEG XEGP MEG MEGP XEM XEMP MO MEM MEMP SEG SEGP	Indicatrices Fel. Indicatrices Fel. Indicatrices Fel. Indicatrices Fel. Indicatrices Indica	The color of the	Indicatrices Tel. Table	Indicatrices Indi	Thirdicative Tell	Thin	Time

Tableau 8.1 (suite)

Végétation	Groupe d'esp.	Nb. De										Тур	e de n	nilieu p	hysiqu	e ⁽¹⁾			,						,
potentielle	Indicatrices	rel.	XM ⁽²⁾	хо	MM	SM	XEG	XEGP	MEG	MEGP	XEM	XEMP	MO	MEM	MEMP	SEG	SEGP	SEM	SEMP	MEF	SEF	HEM	нм	so	но
	CLB	1	-					l						1	<u>.</u>		į				ļ	ļ			
	ERE	16							1					15	ļ				.	.	ļ				
	ERE CLB	1]]						11								ļ			
	ERE DIE	3					l	<u>.</u>	<u>.</u>	į.,				3					.	ļ			- 	į	
	ERE ERP	38	l		6		l			į				31		ļ	ļ	!			.				
	ERE VIL	5			<u>.</u>	<u>]</u>	1	į						5	ļ				ļ	ļ	ļ				
	ERP	13		FE50	2				<u>.</u>	<u> </u>		FE52		11		ļ			į	ļ	į	.			
FE5	ERP VIL	5]			<u>.</u>]					5	1		ļ		ļ <i>.</i>					ļ	
	VIL	4]	<u> </u>	l	<u>.</u>	.			i		4			ļ		ļ					ļ	ļ
	X01	9												9		ļ	į		į	į	į	Ļ			
-	ERE DIE TIC	-1]		.i				11					ļ	ļ					ļ
	ERE ERP TIC	4	1							1		l	. 	2	<u>.</u>	FE55		2	<u></u>	ļ	į	į			Ļ
	ERE TIC	1	1											1	.i	İ		l	<u></u>	<u> </u>				ļ	ļ
	ERE VIL TIC	2	1			1		1	1							<u>.</u>		1	.]	ļ	<u>.</u>	. ļ			
	TIC	2	1]	1					<u> </u>			2	<u>į</u>	į	į	į	ļ	į	ļ	ļ		Ļ	į
	TIC VIL	1													<u> </u>		<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u>; </u>	<u> </u>	<u> </u>	
	DIE PLS	4							•					4			<u>.i</u>	<u> </u>		<u></u>	. i				ļ
	ERE	13		1	2	1		1]			11	<u>i</u>	<u>į</u>	<u> </u>	<u> </u>			.	ļ	į	ļ	
	ERE CLB	2	1		1]]]]		11	<u> </u>	<u>į</u>	į	ļ	ļ	į			Į		
	ERE DIE	-8	1		1		I				1			6				ļ							
	ERE ERP	43	1		6	1	I]			<u> </u>			34	. !	<u>.</u>		11					ļ	. .	
	ERE GRS	2	1						<u> </u>	.]	<u> </u>			2	<u>.</u>	ļ		į	Ļ	į	. <u></u>	. 	{	Ļ	Ļ
l	ERE OXM	3	1	FE60]							FE62		3		<u>.i</u>	.i	<u> </u>	.i					.]	
FE6	ERE VIL	7	1			1]			<u> </u>	<i></i>	7	<u>.</u>	į		Į	<u> </u>	ļ		. .			
	ERP	23	1		2		1		1	.]	<u>.</u>	<u>.</u>		20	<u></u>	į	. j	į	. .	Į			Ļ	. 	į
	ERP VIL	1	1		1		I							1				.			.]		ļ		
1	VAA DIE	1						.)						11											
l	VAM DIE	1]	Ī	1		1		ļ	. į	į	į		11		Ļ		 ,		. 	. į				.
ĺ	VIL	1	1	1			1		į		į	į		Ļ,	. į	į		<u>1</u>	. j	. 			ļ	. į	.
1	X01	1	1	1	J	<u>.</u>		<u>. į </u>			.]	.		ļļ				.ļ						4	.ļ
	ERE ERP TIC	2_					<u> </u>							1	-		<u> </u>	: 1	<u>; </u>	<u>; </u>	<u> </u>		-		
F04	XD1	1				1	;		1			<u>.</u>		<u></u>	.1	.i	<u>. i </u>	. i		.ļ					
F01	AUR RUP	2	1		```	1	1	1	1		F015	<u> </u>			1	1		<u>:</u>		<u> </u>	<u>i</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Tableau 8.1 (suite)

Végétation	Groupe d'esp.	Nb. De										Тур	e de n	silieu p	hysiqu	e ⁽¹⁾	,				•	·			
potentielle	Indicatrices	rel.	XM ⁽²⁾	хо	ММ	SM	XEG	XEGP	MEG	MEGP	XEM	XEMP	МО	MEM	мемр	SEG	SEGP	SEM	SEMP	MEF	SEF	HEM	HM	so	но
	ERE	8			2			1	1					4			<u>.</u>		<u>.</u>		<u>.</u>	ļ			1
	ERE ERP	2						MF12]				1		l	<u>.</u>	1	ļ			i			
	ERE OXM	2						:									1	<u>.</u>	<u>.</u>		<u>.</u>	1			1
	ERE RUI	1												1		<u> </u>	.	ļ							
	ERE DIE TIC	3			1		;	-				ļ			1	1	<u>j</u>	<u>.</u>	<u>.</u>		į	ļ			
MF1	ERE TIC OXM	1								1					ļ	1	<u>.</u>	ļ <u>.</u>						MF18	
	ERE VIL TIC	4	1							1				1	<u> </u>		į	2						ļ	
	ERE RUP	1	1							<u> </u>	l	<u>!</u>				MF 15	ļ	1	į		į	į			
	ERE TIC RUP	11	İ						1]		2	<u> </u>	2		4	<u>.j1</u>						2
	TIC RUP	2]]]				<u> </u>			!	ļ						11			ļ <u>ļ</u>
	AUR RUP	1		1]	<u>j</u>	<u>.</u>	<u>.</u>	į				į	ļ	į	‡ .			ļ	.		<u>]</u>
	AUR SPS	1							<u> </u>						i				<u> </u>	<u> </u>	<u> </u>		ļ		1
	CLB	1							!					1		.	.i		<u> </u>	.	<u>.i</u>		ļ		
	DIE PLS	2	1											1	<u>j.</u>	.	<u> </u>	1 1	<u> </u>	ļ		ļ	į	į	
	ERE	34	1	:	4	1	1		4	2]		19 2 5	1	<u> </u>	į	2	<u>.</u>	Į		Ļ	į		Ļ
	ERE CLB	5	1		1				1	1]		2	<u> </u>	.		1							
	ERE DIE	6]]	1		.]	1		ļ	. i		5				ļ				.		ļ	
	ERE ERP	23	1		5	Ĭ	.		į	. .		į		17	į		<u></u>	1	. 		. 				ļ
	ERE GRS	1	I		1			.1	į	. .		į	<u>.</u>	į <u>.</u>	Ļ		ļ	ļ ₂	. 	<u></u>		. 	ļ	ļ	.
	ERE OXM	.9		<u> </u>	<u> </u>	<u>.j</u>								8				ļ <u>ļ</u>		ļ	-			.	!
	ERE VIL	13	_	<u></u>	<u>.</u>	.j				1			ļ	10				2					· ! ······	· 	
	ERE VIL OXM	2			<u>.</u>	.1	ļ			. 			į	<u></u>		ļ		ļ!			· 		†	ķ	 -
	ERP	9		. <u>ļ</u>	8 2				. 		ļ		ļ	1	ļ		. .	ļ	. 	ļ	· · · · · · · ·	· 	ļ		· · · · · · · · ·
	ERP VIL	3		<u> </u>		. į		1					100 100	2									· 	-	
	RUI GRS	3		MJ10	<u> </u>			MJ11	↓			<u>.</u>	MJ12	ļ '	ļ			ļ		ļ	· [· • · · · · · · · · · · · · · · · · · ·	ķ	ļ	ļ
MJ1	VAA	1 1				. 				1			ļ	1	. .										
1	VAA DIE	1	J		į	. 								·	. 	·····	+		· 	· 		· ! ······		·	•
	VAM PLS	1 1	J!						. .				÷	6			٠	·	· 		• • • • • • • • • • • • • • • • • • • •	·†	· • · · · · · · · · · · · · · · · · · ·		·
1	VIL	9			2	 	 	-	!		!			1		ļ				· ······		•••••	·	+	·
l	ERE DIE TIC	2		ļ	ļ				.i		.ļ			2	-	•••••••			· 				·••·····	·	
1	ERE ERP TIC	4			. ‡	. 	4		. !	4	. 	. 	<u> </u>	÷	<u> </u>	· · · · · · · · · · · · · · · · · · · ·	·			į	·†·····	1	†		1
	ERE TIC	2	4		. 	. 								6		MJ15	i	2		· ······	•-•		†		
1	ERE VIL TIC	12	4										ļ	2	. 	1 113 13	4	. 		·			• • • • • • • • • • • • • • • • • • • •	· †	
l	TIC VIL	3	4						. į		· 	·	ļ		· 	· 				·		· † · · · · · · · ·	· • · · · · · · ·		· •
ì	ERE RUP	3			. 	- 								3		÷	· †	1	1	•					1
1	ERE TIC RUP	7		. 	. 		. 					· ! ······		· ···· ·			••••••••	1 1					1		1
ļ	TIC RUP	1-1-	-						· 	- 	- 	·†·····		· †		1					*********		· †·····	1	1
1	AUR RUP	1 1		4	·				· 	· · · · · · ·	· į	· 	į				· † · · · · · · ·		· † · · · · · · ·	· † · · · · · ·	· †	*******			
I	AUR SPS	1 1	1	:	: 1	i	i	· i		·	:	:	<u>: </u>	;	<u> </u>	<u> </u>	<u>.</u>		<u> </u>	<u> </u>		 		<u> </u>	·

Tableau 8.1 (suite)

Végétation	Groupe d'esp.	Nb. De										Тур	e de n	nilieu p	hysiqu	B ⁽¹⁾					····	,		-	
potentielle	Indicatrices	rel.	XM ⁽²⁾	хо	MM	SM	XEG	XEGP	MEG	MEGP	XEM	XEMP	MO		MEMP	SEG	SEGP	SEM	SEMP	MEF	SEF	HEM	НМ	so	но
	CLB	9	1		2	1			1					3					į <u>.</u>		ļ _.	3			
	ERE	53			5		İ	1	6		1			30	2			3	ļ <u>!</u>		11	2			
	ERE CLB	17	1		2		.	<u>.</u>	<u> </u>					9				3	ļ			4	. 	· · · · · · · · · · · · · · · · · · ·	
	ERE DIE	42	2]	1		<u>.</u>	3	3	11			32	11										
	ERE ERP	25	1		2		1		<u>į</u>	3		1		17			ļ		ļ						!
	ERE GRS	4]	1	į	11				2 21	<u></u>		ļ		ļ ₄		ķ	ļļi			4
	ERE OXM	50	l		1	i	l	<u> </u>	9	<u> 1</u>		1				2	. ļ	9	.i!		1 44 42 7	i			
	ERE RUI	5		MJ20]			MJ21	<u>.</u>	<u>į</u>		<i>,</i>	MJ22	3	į		ļ	2		ļ	MJ27	ļ			ļ
	ERE VIL	12	1				1]	I	.]	l			7				2			. .	11			ļ
	ERE VIL OXM	5				Ĭ]	1	.i	.			3		ļ <u>.1</u>	. 					. ļ			
	ERP	9	1	1	5	1]	<u>.</u>				2	į		Ļ	ļ				ļ			
	PLS	1					I		<u>.</u>					į	Ļ	.	.ļ	ļ	ļ		Ļ	Ļ			<u></u>
	RUI GRS	1	1					j	<u> </u>		,			11								. ļ			
	VAM	2	1]	l	<u>.</u>	<u> </u>					11				ļ	.j .	ļ					
	VAM DIE	1	1]	1		<u>j</u>	.j	ļ 			<u> </u>			. 	ļ <u>.</u>	ļ	ļ		ļ	·		ļ ₄
	VIL	В	1		2	I	1	.i	<u>.</u>	. 1	ļ			2		ļ		ļ!		ļ	. 		ļ!		ļ
	X01	2	1				<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>: 1</u>	<u> </u>	ļ					:			ļ	
MJ2	ERE DIE TIC	4	T				Ī		1	. <u>İ</u>	<u>į</u>	į		4	. į	į		ļ,				<u>.</u>		MJ28	i
	ERE ERP TIC	3	1								<u> </u>	<u> </u>		i		. i		1		ļ		!		M750	ļ <u>'</u>
	ERE TIC	1	1	1	1						1	<u>]</u> .	<u>.</u>	<u> </u>		į		<u>1</u>	. 		.‡	. 	‡	į	<u></u>
	ERE TIC OXM	8	1	1	1	1]	1]	<u>.</u>		3		ļ		2	. 				į	ļ	2
	ERE VIL TIC	13	1		1	1			2		<u>.</u>	<u> </u>		11		1		3				4			. .
	TIC	1	1	1				1				<u></u>	.	. 1								4			
	TIC GRS	2	1	1	1					. j	<u>.</u> j	<u>.</u>		1 1									ļ		<u>.</u>
	TIC VIL	3	1									İ				MJ25	1	.					.ļ		<u>.</u>
	ERE RUP	4	1			1						<u>.</u>	<u>j</u>	11	. j	<u>.</u>		<u>.</u>	. į				ļ	. 	<u></u>
	ERE TIC RUP	24	1]	1]	į	į	5	. į			5		.		9	į		55
	TIC RUP	6	1								.l	.i						1				2			.i
	SPS	4	1				J				.1			11										. 	. 3
1	SPS GRS	1	1	1		1	1					<u>.</u>	į	į		. 		. 						· 	
	SPS OXM	1	1	1					1	.]		į	į			. .		. 				!			
l	VAM SPS	1	7	Ţ			1				<u></u>	<u>.</u>		11						.				. 	
1	AUR	5	1]]]			.1		<u>.</u>	11				.							3
	AUR RUP	5	7	1					J		<u>. j </u>	<u>.</u>	į					. 	. 				. 		4
l	AUR RUP SPS	2	1	1					.]			<u>.</u>		. į				. į1.							5
	AUR SPS	7	1										1	: 1	<u>:</u>	1		1	<u> </u>	<u> </u>	<u> </u>	; 1	<u>:</u>	<u>:</u>	; 5

Tableau 8.1 (suite)

(á nátatlan	Groupe d'esp.	Nh Da										Тур	e de n	nilieu p	hysiqu	e ⁽¹⁾									
potentielle	Indicatrices	rel.	XM ⁽²⁾	хo	мм	SM	XEG	XEGP	MEG	MEGP	XEM				MEMP	1	SEGP	SEM	SEMP	MEF	SEF	HEM	нм	SO	но
	CLB	8			1				1					6											ļ
	ERE	9								3				5		ļ		1							
	ERE CLB	6			1				2]				4			ļ		į					}	
	ERE DIE	13			1				6					6			ļ								ķ
	ERE GRS	1]			<u>.</u>	11												······			·····	·
	ERE OXM	21			2	<u>]</u>	1	<u>.</u>	6	<u>.i1</u>				2		2				<u> </u>	ļ			<u> </u>	· · · · · · · ·
'	ERE VIL	1			1				11						į		į		ļ		MS25	j	ļ	<u> </u>	÷
	ERE VIL OXM	1					MS21	.	1		<u> </u>		,	MS22	ļ	1	.			ļ	MISZJ	ļ			• • • • • • • • • • • • • • • • • • • •
MS2	ERP	1	.,,,,,,,,,,			1]	<u>j</u>		<u>.</u>	1		.	į	ļ		ļ	į	ļ <u>.</u>	<u></u>		ļ	<u> </u>	.
	RUI ORS	4						İ	3		į	į		.	į	ļ ₂				ļ!	ļ	ļ		<u> </u>	· -
	VIL	1			J]	<u>;</u>	<u> </u>			<u></u>	ļ		2		ļ <u>!</u>		ļ .	. .	ļ				ļ	·†
	X01	3	l		1	<u>.</u>	<u>.</u>	<u>.</u>	1		ļ	ļ		: 4.	! 	ļ		2	· [<u> </u>] -	· 	·
	ERE TIC OXM	3				<u> </u>	<u> </u>		į		į	į		<u>l</u>	ļ	ļ	. .	d 		ļ.	†		ļ	<u> </u>	
	ERE VIL TIC	2	l				ļ		<u></u>		Ļ	ļ		Ļ 	ļ	ļ	. 	2		<u> </u>	·····	····		· · · · · · · · · · · · · · · · · · ·	·†
	TIC GRS	2_	I	<u>.</u>	. .		į	ļ								·		ļ!	·····		1	!			·
	ERE TIC RUP	1_1_	1	<u>.</u>			Į	<u> </u>			.	. 				····	· ·····	ļ		······	· · · · · · · · · · · · · · · · · · ·				1
	TIC RUP	1 1	Į	.			ļ				<u> </u>	ļ		ļ	÷		· 	<u> </u>		<u> </u>	†				
	AUR	1	L				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>: </u>	<u> </u>	 '-						!	!		: 	: 	
	VAA PLS	1					İ	<u> </u>	<u>.</u>			<u>.</u>	į	<u>į1</u>		. 		ļ	. 		. 	ļ			
RB1	VAM OXM	1	1					Ĭ	1		RB12	1			ļ							· !	-		
	TIC GRS	1	1	1						<u> </u>		<u> </u>	<u>: </u>	: 1	<u> </u>	<u> </u>	<u> </u>								-
	PLS	2									Ĭ	<u>.</u>	<u></u>	<u>.</u>	<u>.</u>			ļ		ļ		ļ	ļ		2
	TIC RUP	4	1	1	1									j	.]		. į	ļ		į	.i	Į	. 		4
	PLS SPS	1 - 7	1					1			1							.1		.]					
	SPS	1 2	 	ļ					1]	<u>.</u>		. j	j	. <u>į</u>	<u>. j </u>		. 	. 		
RC3	SPS GRS	1 2	 	†			·	1					RC38]								.]	.]		
ĸω	SPS OXM	1		· · · · · · · ·		†		1			1	1		1				.1		.ļ		.i			
	VAM SPS	1 1	1	· • • • • • • • • • • • • • • • • • • •							T	1]		1			. .				. j	. 		
	AUR RUP	9	1	1		··!·····	1				1]]							. 					
	AUR RUP SPS	1 1	1	1			1	· · · · · · · · · · · · · · · · · · ·		1	1									.ļ					
	AUR SPS	6	1	•										<u>:</u>				<u> </u>			<u>:</u>	<u>:</u>	<u>: </u>	<u> </u>	: 6

Tableau 8.1 (suite)

Vénétation	Groupe d'esp.	Nb. De										Тур	e de n	nilieu p	hysiqu	e ⁽¹⁾						,		·	
potentielle	Indicatrices	rei.	XM ⁽²⁾	хо	мм	SM	XEG	XEGP	MEG	MEGP	XEM	XEMP	МО	MEM	MEMP	SEG	SEGP	SEM	SEMP	MEF	SEF	нем	нм	so	но
-	CLB	1												<u> </u>				1						ļ	ļ
	DIE PLS	9			1				1]				5			ļ	2	į				· · · · · · · · · · · · · · · · · · ·	ļ	ļ
	PLS	2						<u>.</u>	1		ļ. 			ļ		ļ <u>ļ</u>								ļ	ļ
	RUI GRS	1							ļ					ļ <u>.</u>		1								ļ	ļ
	VAA DIE	15	1		6				5	11				2			ļ								ļ
	VAA OXM	2	1										RE22	11				0505			ļ	ļ			ļ
	VAA PLS	4		RE20	1			RE21	3	<u>j</u>		į					į	RE25	ļ			ļ			ļ
RE2	VAM	1			1			<u>.</u>	<u> </u>	.]												ļ			
	VAM DIE	8			3]]	Э.	1 1		<u>.</u>				11	.	ļ <u>.</u>			ļ	ļ	ļ		·
	VAM OXM	7			2		l		<u>1</u>	11	L	į		2				ļ <u>]</u>			<u>.</u>	į		ļ	<u> </u>
	VAM PLS	5			1		.		11			į		2				<u>1</u>	Ļ	ļ	ļ				ļ
	X01	1	1							<u> </u>				<u> </u>	<u> </u>	Į _.		ļ		ļ	į	.			
	VAM SPS	5	1		1	<u> </u>	<u>.</u>	į	11	<u>.i</u>				11		ļl		ļ	.		ļ		ļ		ļ.
	AUR	1				.]				. .	į	<u> </u>		ļl		<u> </u>		<u> </u>	ļ	ļ	ļ	<u>.</u>	ļ	∤	
	AUR SPS	1				:	<u>: </u>			<u>: </u>	<u>:</u>		<u> </u>		-	<u> </u>		<u>; </u>	!		; 	1		! 	-
	CLB	1							İ		<u>.</u>	.i				<u> </u>		ļ				<u>1</u>			
	RUI GRS	3	1			1	1]	.]	1	<u> </u>	ļ	į	į	ļ	. 	ļ		Ļ	į	ļ	<u></u>	ļ	J
	VAA PLS	1	1						l	1			<u></u>							ļ					ļ <u>¦</u>
RE3	VAM	1	1			1		1		Ī				RE39	<u> </u>			ļ		<u>.</u>		.ļ <u>.</u>		. 	<u>.</u>
	SPS	6	1			1	1	1	1	. j	1	<u>.j</u>	į		ļ	ļ						<u></u>]		. .	
	SPS GRS	6	1						<u>]</u>		<u>.</u>		į		<u>.</u>	Ļ		ļ		į		2	ļ	. 	4
	SPS OXM	1	1				1	J	<u>.</u>				<u> </u>	.ļ									. 		5
	VAM SPS	5					<u> </u>				<u> </u>				<u> </u>		<u> </u>	!						-	; 0
	CLB	1					I				1			<u> </u>	j	1		į		Į	.j	. į	Ļ		.
	DIE PLS	2	†·····		1	1	1		1	1	1	1		1		.]				<u></u>		ļ	.ļ		
	VAA	3	1 1		1		1						1		<u>.</u>	J		<u>.</u>	. 	ļ	. 				
RP1	VAA DIE	6	2	RP10	1	1	1	1	2	1	1			RP12	1			<u></u>							
*** *	VAA PLS	1 1	1		•	1				1			1			.1				.ļ					
	VAM DIE	5	1			1	1		3	1	I	1	1	1		<u>. j </u>			. j						. .
	VAM OXM	1 3	1	·	1	· · · · · · · · · · · · · · · · · · ·	1	1	1		1			2]		<u>!</u>	1	:	<u>:</u>	:	<u>: </u>	<u>:</u>	1

Tableau 8.1 (suite)

Végétation potentielle		Nb. De										Тур	e de n	nilieu p	hysiqu	e ⁽¹⁾									
		rel.	XM ⁽²⁾	хo	MM	SM	XEG	XEGP	MEG	MEGP	XEM	XEMP	мо	МЕМ	МЕМР	SEG	SEGP		SEMP	MEF	SEF	HEM	HM	SO	но
	CLB	16			6		.			11			. 	4	.		į	5			ļ				
	DIE PLS	5			1					1			 .	4	<u>[</u>	.	įi			<u>.</u>	ļ				
	ERE	36	2		4				1	1				24 7 6	<u>.</u>	11	1	3		i			.		
	ERE CLB	15	2 2		4 2				1					7	i		ļ	2	11		ļ				
	ERE DIE	10	1			1			2	1		il		6		1	į	2	.		.	.	į		
	ERE ERP	45	2		7	1			2	2				28	į		į	3	į	.	ļ				į
	ERE GRS	1	1						1						1						ļ				ļ
	ERE OXM	37	1						4	1 1				18	2			10			ļ <u>1</u>	ļ <u>1</u>	ļ		
	ERE RUI	2	1						4 2	1	<u>.</u>	<u>.</u>	,	İ	į				į	<u> </u>	į	į			ļ
	ERE VIL	5	1		1				į	<u>.</u>				4	į	ļ	į	ļ	j		į	į		į	ļ
	ERE VIL OXM	7	1				L		l	.l				6	<u>.</u>			11					ļ		
	ERP	6	2]	L]	l		1	i		6 3	ļ	ļ					ļ		ļ		
,	ERP VIL	1	1			1	Ī		<u>i</u>	<u>;</u>	<u>.</u>	<u>.</u>		11	ļ	ļ	į			į	ļ	<u></u>	 	ļ	
	PLS	1	1						<u> </u>	j	<u>.</u>			<u> </u>	į		Į	1	į	ļ	<u>į</u>	ļ		ļ	ļ
	RUI GRS	3	1	1						<u> </u>	İ	İ		1	<u>.</u>	11	<u></u>	11	.i				ļ	!	ļ
	VAA	1	1	RS10	1]	T		RS11					RS12			į		į		į	Ļ	į	.	
RS1	VAA DIE	4	1			1			1]			3		J				RS15	1	.i	<u> </u>	ļ	<u>.</u>
	VAA PLS	1	1		·····		İ	i		1					1	l	1	1	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	į	ļ	ļ
	VAM	1	1						1]	Ĭ	l	1	<u>.</u>	<u>į</u>	<u>į</u>	<u>.</u>	į	į	ļ	
	VAM OXM	2	1				1		ì	1]	1		1		l	İ	1 1	.Î	İ <i></i>			<u> </u>	<u> </u>	.1
	VAM PLS	1-1	······	1	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·	†		1		· .		1 2 4					1				<u> </u>	1	. <u>i</u>
	VIL.	2	†	†	:	1	1			1			· · · · · · · · · · · · · · · · · · ·	2		T	1	<u>.</u>	İ	į	<u>.</u>	<u>.</u>	į	į	<u></u>
	X01	1 6	1	·		· ······	1		1					4		1)]]	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>į</u>	į
	ERE DIE TIC	2	1	<u> </u>	1	-	-	:			:		-	1	T	Ī		Ī	<u>.l</u>	.]			<u></u>		.1
	ERE ERP TIC	6	1	1	1	1			1	1				4					1		. !	.1	<u></u>	.j	
	ERE VIL TIC	3	1					1	1			1		4 3		I	j	<u>j</u>	<u>.</u>	<u>.</u>		. į	į	ļ	
	TIC	2	·····	·	1	1	1	;	1	1]		Ĭ	. j	<u>.</u>		<u>.</u>	<u>į1</u>		į	ļ	
	ERE RUP	1 2	1		1	1	1		1	-	1	1		1			.]					.i	.]		
	ERE TIC RUP	8		†	1				1	1				3	<u></u>	1 1		2	<u>.i</u>		2				
	TIC RUP	2					1						i	1	J	<u>. j</u>	.j.,	1 1	. <u> </u>	<u>.</u>	<u></u>		. 	ļ	.
	SPS	1 1	1	1	1	1	1	······				1]	j	.]	.j		1				. į	. į		. į
	SPS GRS	11	1		1	1	1	1			:		Ĭ	İ		.i	<u>.i</u>					11	.i	<u></u>	
	SPS OXM	1	†····	· * · · · · · · · · · · · · · · · · · ·	1	1	1	1						I			<u>.i</u>	1 1			.1	.j			
	AUR	4			1	· ·	1		1					1	1		. j	1 1	<u>. į </u>	<u></u>	. .	. 1	.j		
	AUR SPS	2	1			1							<u> </u>	<u> </u>		1	<u> </u>	1	<u> </u>	<u> </u>	<u>: </u>	<u>:</u>	<u>: </u>	<u>:</u>	<u> </u>
	CLB	7	1	1	3	-			1	:	1			1				1	•	1		1	1		
	DIE PLS	5			·····	· [+	· • · · · · · · · · ·	3					2				1	1					1	1
1	PLS	1 2	⊣		· ·····	· † · · · · · · ·	·	· • • • • • • • • • • • • • • • • • • •	† <u>†</u>					·;····-	1	1	1	1	1				j]	.]
l	VAA	1 2		÷		·- 			· · · · · · ·	••••••	1 1			1				1			Ţ	1	1	1	1
RS2	VAA DIE	1 3	 	· 	<u>.</u>	. 	+	· †	· · · · · · ·		1		1	1	1		1	7					1	1	
K25	VAA PLS	1		RS20	<u> </u>			RS21	†·····	· •	· • • • • • • • • • • • • • • • • • • •	· † · · · · · · · · · · · · · · · · · ·	ļ	1		• • • • • • • • • • • • • • • • • • • •	RS22	T		1	1		1	1	-
	VAM DIE			KOZU	ļ _i			N321		1			1	1			1	•					1	1	1
i		4		. ;	<u>.</u>			· -	1				·····	4				1							1
I	VAM OXM VAM PLS	5		-	. 				· 	. †	·		ł	1 7	+			•				1	1	1	1
I		1 1					1	··•	· • · · · · · ·	· • · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	ļ	·†	· • · · · · · · ·						1	1	1	1	
l	AUR				. 	· † · · · · · · · ·		÷					1	+		1		2							
	AUR SPS	5	_l	.i	1	İ	<u> </u>			<u> </u>			ــــــــــــــــــــــــــــــــــــــ		<u>. </u>	<u> </u>	-	·						<u> </u>	

Tableau 8.1 (suite)

Végétation potentielle	Groupe d'esp. Indicatrices	Nb. De rel.										Тур	e de r	nilieu p	hysique	(1)								,	
			XM(2)	ХO	MM	SM	XEG	XEGP	MEG	MEGP	XEM	XEMP	MO	MEM	MEMP	SEG	SEGP	SEM	SEMP	MEF	SEF	HEM	нм	so	но
	ERE OXM	5																2				1			2
	ERE RUI	1																				1			
	VAM	1										Ĭ										1		[
	VAM OXM	2]																2			
	TIC GRS	2				I																1			1
	ERE RUP	1				<u> </u>]]]	1							
	TIC RUP	3	L		<u>.</u>	<u> </u>		<u> </u>														3			
	SPS	1				l										RS38									1
	SPS GRS	1]													1
	SPS OXM	1																							1
	VAM SPS	1 1				<u>[</u>																			1
	AUR	1																							1
	AUR RUP	6]										3			3
	AUR RUP SPS	4																				2			2
	AUR SPS	18																				2			16
	CLB	1																1							
	DIE PLS	Ü				1			1					7										ŗ -	
	VAA	2			1						1													······	
	VAA DIE	6			1	†								5	·····	•••••				•••••			•••••		
	VAA PLS	1 2			<u> </u>	!	RS51		1		•••••	·	• • • • • • • • • • • • • • • • • • • •	·····			RS52						•••••	ļ	<u> </u>
	VAM DIE	5	1			į			·····	· · · · · · · · · · · · · · · · · · ·	•••••			3			11332	1	•				······	 	ļ
	VAM OXM	1		·····	<u> </u>	!	·····									1							•••••	·····	
	AUR	l i l			1	!						······	•••••											ļ	
	AUR SPS	1 2										•		1		1								ļi	<u> </u>
	ERE ERP	3			1					1		1		1		<u> </u>					-				-
	VAA PLS	 	1						RT12		••••••			<u>!</u>		•			•••••					·	ļ
	X01	 -i -	1				••••••				•					• • • • • • • • • • • • • • • • • • • •					ļ			;	ļ
TOTAL		1			·	•						<u> </u>					<u> </u>				.	<u> </u>			
ΦX:Rég M:Rég S:Rég	s sont exprimées e ime hydrique xériq ime hydrique més ime hydrique subh ime hydrique hydri	ue (voir la Ique lydrique			s hydriq	ues à l'a	nnexe)			_M _E _O	: Dépôt						moyeni					ité faible ité élevé		ente	

Figure 8.1 : Clé des types écologiques du sous-domaine de l'érablière à bouleau jaune de l'ouest (régions écologiques 3a et 3b)

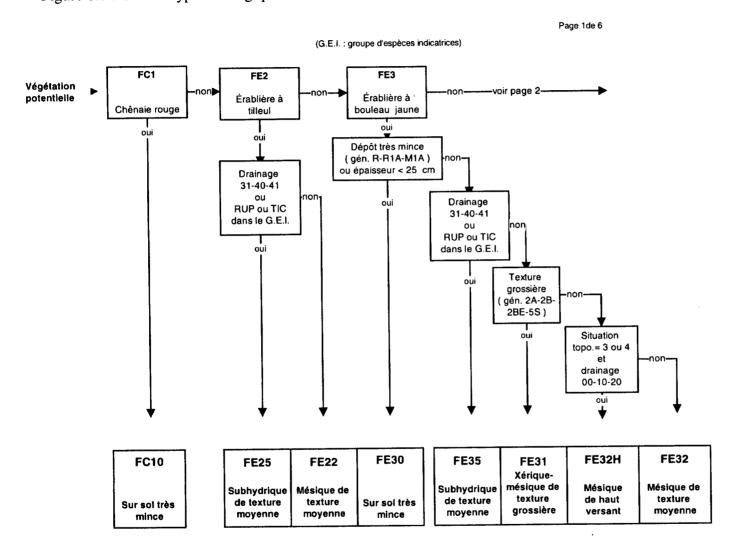


Figure 8.1 (suite)

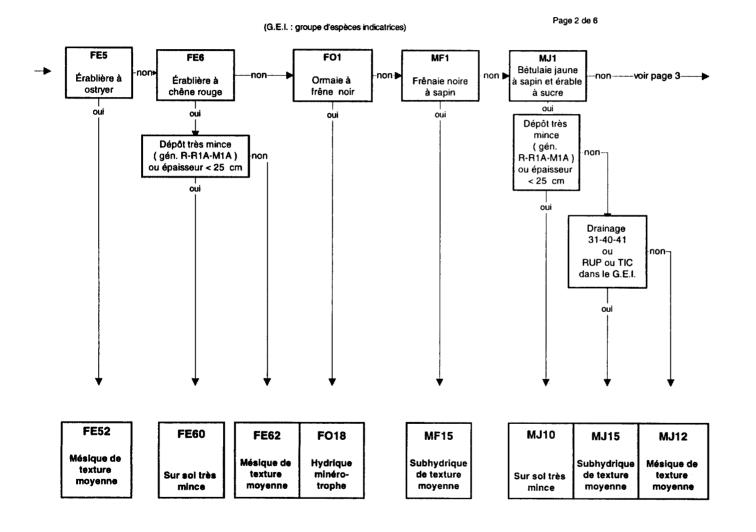


Figure 8.1 (suite)

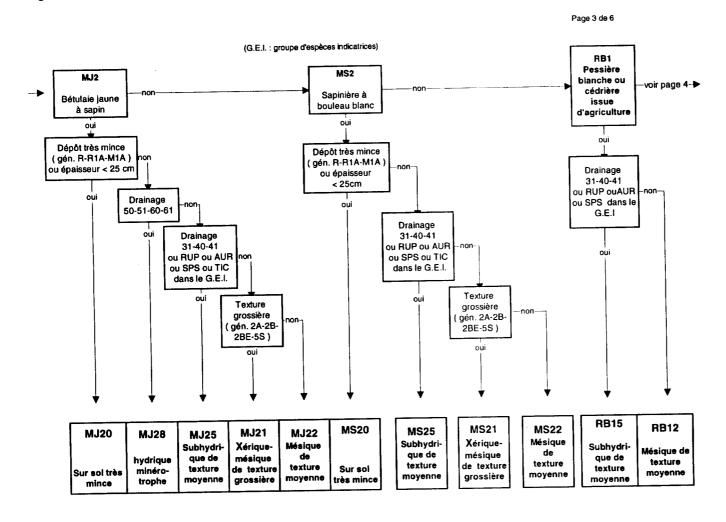


Figure 8.1 (suite)

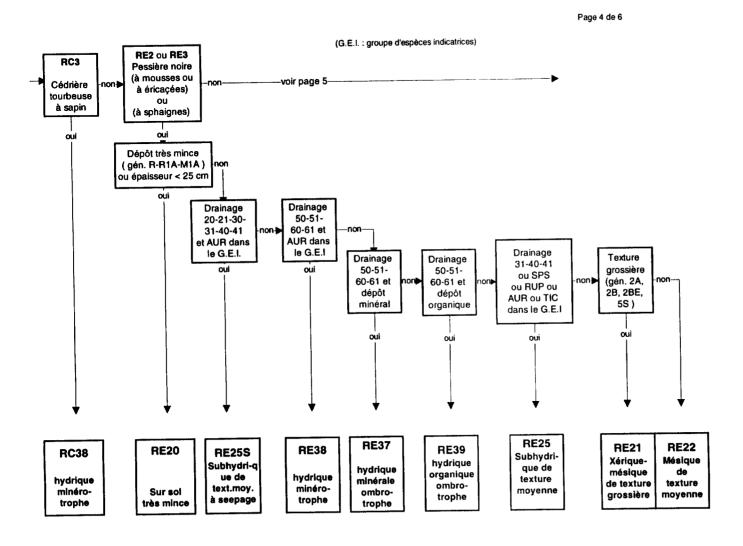
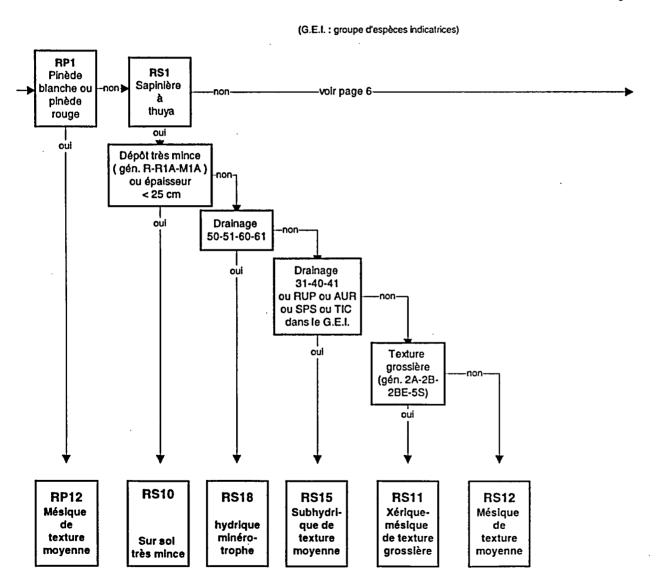



Figure 8.1 (suite)

Page 5 de 6

Mai 1999

Fig. 8.1 (suite)

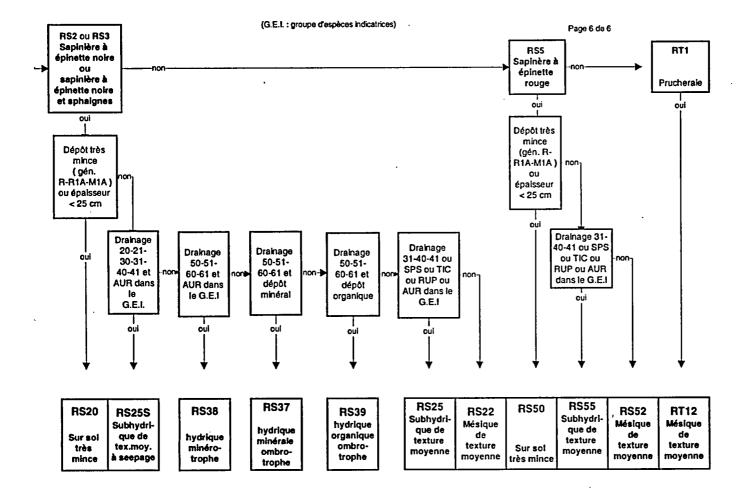
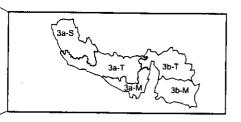


Figure 8.2 : Identification du type écologique sur le terrain

1. Localiser la station

Identifier le district écologique, l'unité de paysage régional, la région écologique et le sousdomaine bioclimatique dans lequel est située la station décrite.


Matériel: Carte de la figure 3.1; au besoin carte écoforestière (1/20 000) ou carte des districts écologiques (1/250 000).

Ex.: District écologique 18M001;

Unité de paysage régional; 18

Région écologique 3a, sous-région 3a-T,

Sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest.

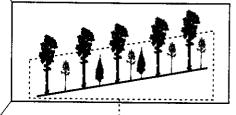
2. Identifier les caractéristiques physiques de la station

Connaissances requises : Compréhension d'éléments de géomorphologie et maîtrise des clés d'identification de la texture, des dépôts de surface et du drainage (voir « Le point d'observation écologique»).

- 2.1 Identifier la classe de texture; (texture de l'horizon "B")
- 2.2 Identifier le dépôt de surface;
- 2.3 Identifier la classe de drainage.

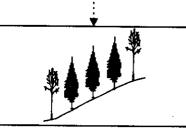
Ex.: Texture moyenne (M), dépôt de till (1A), drainage modéré (30)

3. Identifier le type forestier


Identifier la physionomie du couvert, le couvert arborescent et le groupe d'espèces indicatrices qui composent le type forestier.

Connaissances requises: Savoir identifier les principales espèces arborescentes et du sousbois (voir «Petite flore forestière du Québec»).

- 3.1 Identifier la physionomie du couvert (clé de la figure 6.1);
- 3.2 Identifier le couvert arborescent (clé de la figure 6.1);
- 3.3 Identifier le groupe d'espèces indicatrices (clé de la figure 5.2);
- 3.4 Former le type forestier par l'agencement de la physionomie du couvert, du couvert arborescent et du groupe d'espèces indicatrices.


Ex.: FO/PET__/ERE DIE_

qui signifie Forêt de peuplier faux-tremble à érable à épis et Dièreville chèvrefeuille.

4. Identifier la végétation potentielle

4.1 Identifier la végétation potentielle (clé de la figure 7.1).

5. Identifier et valider le type écologique

Identifier le type écologique en combinant la végétation potentielle et les caractéristiques physiques de la station puis le valider au moyen de la sère et de la description.

- 5.1 Identifier le type écologique (clé de la figure 8.2);
- 5.2 Valider le type écologique en consultant la sère physiographique de la sous-région écologique (chapitre 10) et en lisant la description (chapitre 10)

Ex.: MS22 : Sapinière à bouleau blanc mésique de texture moyenne.



Tableau 8.2 : Répartition des types écologiques par sous-région écologique du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Туре		Nb. de		Sous-re	igion écolog	gique ⁽¹⁾
écologique	Description	rel.	3a-M ⁽²⁾	3a-T	3a-S	3b-M
		25	5	7	4	7
C10	Chânaie rouge sur dépôt très mince, de texture variée, au drainage xérique à hydrique	221	39	42	10	58
E22	Erablière à tilleuf sur dépôt mince à épais, de texture moyenne et de drainage mésique	44	12	3	0	17
E25	Erablière à tilleul sur dépôt mince à épais, de texture moyenne et de drainage subhydrique	50	- '-	5	ö	19
E30	Erablière à bouleau jaune sur dépôt très mince, de texture variée, au drainage xérique a hydrique	15	- 1	0	- 0	5
E31	Emblière à bouleau jaune sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique	222	14	61	30	38
E32	Erablière à bouleau jaune sur dépôt mince à épais, de texture moyenne et de drainage mésique Erablière à bouleau jaune sur station de haut versant au dépôt mince à épais, de texture moyenne et de drainage mésique	55	1	11	21	5
E32H		79	17	8	15	10
E35	Erabliere a bouleau jaune aubhydrique de texture moyenne	106	26	26	2	30
E52	Erablière à ostryer mésique de texture moyenne	14	1	7	<u>-</u>	4
E60	Erablière à chêne rouge aur soi très mince	98	37	43	- 6	3
E62	Erablière à chêne rouge mésique de texture moyenne	3	9,	0	0	0
O18	Ormale à frêne noir hydrique minérotrophe	37	12	8	5	2
VIF15	Frênsie noire à sapin subhydrique de texture moyenne	29	2	5	- i	14
WJ10	Bélulaie jaune à sapin et érable à sucre sur sol très mince	88	11	29	10	13
J12	Bétulaie jaune à sapin et érable à sucre mésique de texture moyenne	42	4	8	7	10
AJ15	Bétulaie jaune à sapin et érable à sucre subhydrique de texture moyenne	31	0	7	8	8
W120	Bétulaie jaune à sapin sur sol très mince	31	2		14	1
AJ21	Bétulale aune à sapin mésique de texture grossière	142	- 6	40	64	4
WJ22	Bétulaie jaune à sapin mésique de texture moyenne	50	3	15	20	2
A)25	Bétulais jaune à sapin subhydrique de texture moyenne	87	9	11	25	17
V) 28	Bétulais jaune à sapin hydrique minérotrophe	4	1	0	1	0
MS20	Sapinière à bouleau blanc sur sol très mince	27	4	4	9	2
MS21	Sapinière à bouleau blanc mésique de texture grossière		1	8	9	4
MS22	Sapinière à bouleau blanc mésique de texture moyenne	27	2	5	10	
MS25	Sapinière à bouleau blanc subhydrique de texture moyenne	21 3	1	0	0	'
RB12	Passière blanche ou cédrière mésique de texture moyenne issue d'agriculture	29	3	2	5	8
RC38	Cédrière à sapin hydrique minérotrophe (sol organique)	29	0	5	14	0
RE20	Pessière noire sur soi très mince	18	2	2	5	3
RE21	Pessière noire mésique de texture grossière	12	- 2	1	11	0
RE22	Pessière noire mésique de texture moyenne	11	- 0	5	4	- 6
RE25	Pessière noire subhydrique de texture moyenne	11 2	0	0	1	- 6
RE25S	Pessière noire subhydrique de texture moyenne avec seepage (RE2B)	4	0	1		1
RE37	Pessière noire hydrique minérale ombrotrophe	20		3	6	2
RE39	Pessière noire hydrique organique ombrotrophe	21		9	10	0
RP12	Pinède blanche ou pinède rouge mésique de texture moyenne	36	- 0	6	11	14
RS10	Sapinière à thuya sur sol très mince	21		5	11	3
RS11	Sapinière à thuya mésique de texture grossière	120	7	27	67	9
RS12	Sapinière à thuya mésique de texture moyenne	60	2	1B	29	3
RS15	Sapinière à thuya subhydrique de texture moyenne			18	1	1 1
RS18	Sapinière à thuys hydrique minérotrophe	5	2	4	2	
RS20	Sapinière à épinette noire sur sol très mince	8 21	2 2	6	8	0
RS22	Sapinière à épinette noire mésique de texture moyenne			0	1 1	0
RS25	Sapinière à épinette noire subhydrique de texture moyenne	2	0		 	0
RS25S	Sapinière à épinette noire subhydrique de texture moyenne avec seapage	5	0	3	6	0
RS37	Sapinière à épinette noire hydrique minérale ombrotrophe	12	0		12	
RS38	Sapinière à épinette noire hydrique minérotrophe	29	0	4	12	6
RS39	Sapinière à épinette noire hydrique organique ombrotrophe	7	0	2		1
R\$50	Sapinière à épinette rouge sur sol très mince	4	0	0	3	0
RS52	Sapinière à épinette rouge mésique de texture moyenne	18	1	1	13	0
RS56	Sapinière à épinette rouge subhydrique de texture moyenne	6	0	0	2	0
RT12	Prucherale mésique de texture moyenne	5	0	1	11	1
	Total	2047	236	474	497	326

(ii) Les données sont siprimées en nombre de relevée et ____.T : Typique ___.M : Méridionale ___.8 : Septentrionale

Tableau 8.3 : Relation entre les types écologiques, les essences et les origines du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Type	Hb.	-														Groupe EPN ⁽²⁾	Essences dominantes	Origina écologique ⁽³⁾																				
icologique	de ref.	osv	FRM	FRP	ERS	TIL	FRA	CET	PEB	80	CHE	HE	G PE	r PI	в Р	IR	PRU	EPA	тно	ERR	SOA	SOD	BOG	ВОР	EPD	SAB	EPN	MEL	PIG	LFM	- Guillian III	BR	1	T C	_		_	NA
RE21	18	0	0	0	2	0	0	0	l o	1 3	10	1 2	25	1	5 1	11	0	24	10	12	14	0	0	25	13	21	40		51	117	PIG-EPN	9	10	13				3
RE25	11	ŏ	ō	ŏ	ō	ō	0	3	0	6		0				0	0	24	10	22	15	0	0	32	17	42	56		30 9	112	EPN-SAB-BOP EPN-MEL	4	8					15
E39	20	0	5	0	0	0	0	0	0	7		0				2	- <u>ö</u> -	D	21	10	7	2	0	43	10	24 34	66 54	32 5	19	95	EPN-BOP-SAB	14	1 8					4
€20	20	0	٥	0	0	0	0	Ö	0	9		2				3	0	17 16	18	33 21	17	3	- 0 -	30	7	33	55	22	Ö	93	EPN-SAB	5	Ť					19
538	29	0	6	0	3	0	0	8	9	1 8		1 6				ā	- 6	-6	0	12	9	Ď	Ö	14	12	24	50	36	0	- 86	EPN-MEL	1						2
E37 E22	12	0	0	1 6	+ +	8	1 6	1 6	1 6			1 0				ŏ	ŏ	15	14	54	13	0	0	53	10	28	44	5	20	84	ERR-BOP-EPN	8	10					3
E25S	2	l ö	0	ŏ	ŏ	ŏ	ŏ	Ť	Ť			Ī		1	2	0	0	45	0	7	12	O	0	17	0	32	38	0	0	83	EPR-EPN-SAB EPR-SAB-BOP	2	18				0	위
S55	6	ő	0	ō	0	0	0	0	0	7] [0	D	58	12	19	14	0	0	34	13	49 71	17 56	18	0	75	SAB EPNERR	3	1 8					2
S25S	5	4	19	0	0	0	0	0	10			10				7	9	68	22 15	36 41	11	0	0	41	25	40		0	5	73	EPN-BOP-ERR	3						ŏ
S50	4	0	0	0	0	0	0	ļ	0	1 8		1 0				12		- 58	12	44	111	l ö	ŏ	57	19	42	3	3	- 6	70	EPR-BOP-ERR	11	To	2	1	ī	Ö	4
S52	18	0	0	0	14	0	0	8	5	1 6						16	ö	5	10	43	18	ŏ	ő	32	22	57	46	Ö	17	68	SAB-EPN-ERR	5		1			0	2
S20 P12	<u>8</u>	0	0	0	14	1 6	븁	1 6	+ 6							49	2	26	12	43	14	0	0	35	16	37	36	0	4	56	PIB-PIR-ERR	14						7
S39	7	1 6	6	Ö	5	1 6	l ö	۱ŏ	Ť	17	19	14	0		ī	0	21	20	15	24	13	0	0	30	14			0	0	66	SAB-EPN	0					8	5 24
C36	29	Ť	22	Ō	7	ŏ	0	0	11	17	2 2	1.				0	17	14	61	19	8	4	0	20	17	48	29	21 5	0	64 58	THO-SAB SAB-BOP-PET	1					∺	4
537	12	3	6	0	6	0	0	0				1				5	0	18	16	35 33	12	0	0	43	15 34	46 58		5	7	57	SAB-BOP-EPN	8					ŏt	<u> </u>
522	21	O	0	0	6	0				3		1				9	0	19	16	35	21	1 6	0	59	19	70		ŏ	_ 0	54	SAB-BOP-EPN	2	10				ō	0
S25	2	0	<u> </u>	0	0	0	0									23	0	19	5	17	10	6	ŏ	41	23	41	70	0	10	49	PET-BOP-SAB	12					2	В
IS21	27	0	7	0 2	10	 -	6					+:				ii	29	24	10		11	ō	ō	37	17	45	23		0	47	ERR-SAB-BOP	17						11
U20 S25	21	 	10	1 6	10	╁╬	1 ŏ									8	Ö	18	16	17	13	Ō	8	49	30	40		0	6	47	BOP-PET-SAB	11					2	31
S1B	5	l ö	15	1 0	16	ō	lõ						16			0	0	10	62	17	12	0	0	33	11	44			0	43	THO-SAB-BOP	11					0	22
S10	36	5	2	Ŏ	25		2	10								9	41	27	53		17	0	0	35	24	42		0	2	34	BOP-ERR-SAB	54						71
U22	142	2	5	0	9	1	1						2			10	13	16	11		10	1	-8-	51 47	27	45	15		- 6	33	BOP-ERR-SAB	13						27
U25	50	0	16	0	В	3	Q							9 !		1 0	9 67	16 33	13 23	27	1 13	0	1 8	29	13			0	n	33	PRU-PIB-EPR	Ö					ő	4
T12	5	0	0	0	9	0	Ī						1 7		4	22	6	14	5	44	lä	1 6	ᇦ.	25	21	39		ŏ	ō	31	CHR-PIB-ERR	14					0	9
C10	25	15	6	0	16	3	8						1 4			9	3	13	10		17	2	ō	43	34				5	31	SAB-BOP-PET	10			6		1	8
IS22 U21	31	1 2	1 5	1 0	1 6	1 4							1 2			14	9	18	9	40	13	0	0	41	28				0	29	SAB BOP ERR	13			7		0	10
U10	29	1 3	 š -	1 6	32	0	Ö				B 12	1 7	0 10	5		4	33	21	12	44	7	D	0	25	21	42		0	0	28	BOJ-ERR-SAB	18			2			20 87
S12	120	5	1 3	0.	36	7	1						9 1			4	26	14	51	36	7	D	1	33	26				0	26	THO SAB BOJ	110			-		0	43
S15	60	2	17	0	26		2						5 1			5	15	13	58 D	29	11	0	0	45	26 36				0	25	SAB-BOP-PET	tö			ŏt	ŏ	31	0
812	3	0	0	0	13						0 10		1 2			5	0 22	25 14	10	21 46	1 13	1 7	10	34	26				0	24	BOJ ERR SAB	22			4	ō l	2	50
U12	88	1 1	1.	0	34 51	12	10						4 1			12	15	10	5	48	+ ,	Ö	1 1	27	25	43			2	23	CHR-ERS-ERR	42			5	0	0	51
E62	98 21	25	5	0	24		+ 6						5 1			10	18	13	49	28	13	0	0	42	19	46			0	23	THO SAB BOP	5			6	0	11	9
IS11 U28	B7	1:	41	1 6	1 26		1 8				5 4		9 1	1	5	0	18	10	44	28	9	1	0	20	25				0	22	SAB-BOJ-THO	5 8			9 6	0	0	63 20
4F15	37	14	49	10	46										11	0	8	0	10	30	8	0	0		28				0	18	FRN-ERS-SAB SAB-BOP-PIB	1 2			1	ö	8	7
S20	4	0	0	0	0						7		0 2		36	0	0	17	0	25		0	- B		17				0	15	ERS-BOJ-HEG	31			2	ö	1	157
E32	222	10	5	0	77								7 1		13	0	16	8	8	32	6	10	+ *		27				3	14	BOJ-ERS-ERR	13			6	ŏ	0	23
U15	42	14	20	0	36						9 8 B 7		10 2 11 1		4	10	19	12	1-7	39		1 5	1 6		13				ō	12	ERS-ERR-BOJ	4			5	0	0	6
E31	15	29	5	0	55 59								0 2			0	11	7	10	44		0	ō	24	28	40	5	0	0		ERS-CHR-ERR	2			2	0	0	10
E60 E30	50	1 12	1 4	+ *	+ 39										13	5	33	В	6	32	6	Ō	0	16	19	28	3	0	0	11	ERS-BOJ-HEG	9			8	0	0	33
E22	221	19	+	1 6	78			1	2 3	1	7 1	2	39 2	ġ	18	5	11	5	4	32		11	3		16				0	7	ERS-HEG-ERR	14			31 11	0	2	119 54
E35	79	9	12	Ô	73	6	2	3	3		4 E				3	2	16	6	8	32		2	0		21				0	- 7 6	ERS-BOJ-SAB ERS-HEG-BOP	10			10	ö	1	23
E25	44	21	10	0	74						7 5				10	<u>.</u>	8	3	7	30		0	0		14				ő	1 B	ERS-HEG-ERR	1 6			1	ŏ	ö	47
E32H	56	10	0	0	86						4 7				6 10	0	18	1	5	1 27		- 6	0						ŏ	1 4	ERS-OSV-HEG	2		0	9	ŏ	ō	72
E52	106		40	- 0	86						4 2				응	ᇂ	1 0	10	10	1 6			l ö		10				0	0	FRN	0			0	0	0	3
018 101AL	204	0	1 40	1 0		1.0	<u> </u>						<u> </u>	٠	-		<u> </u>		<u> </u>	, ,																		
[©] Les donné [©] Sommatio [©] Pour les o	es soni n des ir	t compile adices F/	de EPI	I, EPR, I	PIG at R	MEL pa	r grou	pe d'e	spèces	s indic	atrices	e reli	ative X c	OUMB	t moy	en) ^u	²).																					

Tableau 8.4 : Liste des types écologiques selon le régime hydrique et la richesse relative des groupes d'espèces indicatrices du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

Régime	Classe	Caractéristiques		Richesse	Essences	Caractéristiques de la p	ente	Type	Nb.	
hydrique	texturale	du dépôt	Graupe d'aspèces indicatrices ⁽¹⁾	relative	dominantes	Situation	% pente	écologique	de rei.	Remarques
nyanique	10.001010	33 3393	TIC-RUP	Pauwre		Sommet , haut de pente , mi-pente	9 à 30%	RE20	20	Sous-région 3a-S
			CLB, VAA-DIE	Pauwre		Sommet, haut de pente,	9 à 30%	RS20	В	
- 1			VAA-DIE, VAN-DIE	Pauvre		Sommet, haut de pente	0 à 30%	RS50	4	
1			ERP, VAM	Movenne	CHR-PIB-ERR	Mi-pente , haut de pente	9% et +	FC10	25	Sous-région 3a-M et 3b
i	Variable	Très mince	ERE-ERP. ERP	Moyenne	ERS-BOJ-HEG	Mi-pente , haut de pente	9 4 50%	FE30	50	Sous-région 3b-M et 3b
Variable			ERP, ERE, CLB	Moyenne	ERR-SAB-BOP	Haut de pente , mi-pente	9% et +	MJ20	31	
				Movenne	SAB-BOP-PIB	Haut de penie , mi-pente	4 à 30%	MS20	4	
1			ERE-OXM ERE-ERP, CLB	Moyenne	THO-SAB-PRU	Mi-pente , haut de pente	9% et +	RS10	<u> </u>	Sous-région 3b-M
	1	Minéral ou organique	AUR-RUP	_	FRN	Terrain plat	0 4 3%	F018	3	300s-region 30-W
	M	Mince à épais		Très riche	BOJ-ERR-SAB		9 à 30%	MU12	88	
	Moyenne	Mince a epais	ERE, ERE-ERP, ERE-VIL	Moyenne		Mi-pente , haut de pente				
			VAA-DIE, VAM-DIE	Pauvre	PIG-EPN	terrain plat	0 4 3%	RE21	18	
Xérique-			ERE-ERP, ERE	Moyenne	ERS-ERR-BOJ	Mi-pents	0 à 30%	FE31	15	Sous-région 3b-M et 3
mésique	Grossière	Mince à épais	ERE-OXM, ERE, ERE-DIE	Moyenne	SAB-BOP-ERR	Mi-pente , teπain plat	0 à 8%	MJ21	31	Sous-région 3a-S
			ERE-OXM, ERE-DIE, RUI-GRS	Moyenne	PET-BOP-SAB	terrain plat	0 à 3%	MS21	27	
			ERE-OXM, ERE-ERP	Moyenne	THO-SAB-BOP	Mi-pente , terrain plat	0 á 8%	RS11	21	
			TIC-GRS, VAM-OXM	Pauwre	SAB-BOP-PET	Mi-pente , haut de pente	4 à 8%	RB12	3	
			DIE-PLS, VAM-OXM	Pauwre	ERR-BOP-EPN	Mi-pente , haut de pente	4 à 15%	RE22	12	Sous-région 3a-S
			VAA-DIE, VAM-DIE	Pauvre	PIB-PIR-ERR	Haut de pente , terrain plat	9% et +	RP12	21	Sous-région 3a-S
			DIE-PLS, VAM-OXM	Pauwre	SAB-BOP-EPN	Sommet, terrain plat	0 à 15%	RS22	21	
		Mince à épais	DIE-PLS, VAA-DIE	Pauvre	EPR-BOP-ERR	Terrain plat, mi-pente	0 à 15%	RS52	18	Sous-region 3a-S
Mésique			ERE-ERP, ERE, ERP	Moyenne	ERS-HEG-ERF	M⊢pente , haut de pente	9 à 30%	FE22	221	
	Movenne		ERE-ERP, ERE-VIL, ERE	Moyenne	ERS-BOJ-HEG	Mi-pente	4 à 30%	FE32	222	
	Moyenne	white a epais	ERE-ERP, ERE, ERP-VIL	Moyenne	ERS-HEG-ERF	Haut de pente , sommet	9 à 30%	FE32H	55	
			ERE-ERP, ERP, ERE	Moyenne	ERS-OSV-HEG	Mi-pente , haut de pente	9 à 30%	FE52	106	Sous-région 3a-M et 3
			ERE-DIE, ERE, ERE-OXM	Moyenne	BOP-ERR-SAB	Mi-pente , haut de pente	4 à 30%	MJ22	142	Sous-région 3a-S
			ERE-DIE, CLB, ERE	Mayenne	SAB-BOP-PET	Mi-pente	4 à 30%	MS22	27	
			ERE-ERP, ERE, ERE-OXM	Moyenne	THO-SAB-BOJ	Mi-pente , haut de pante	0 à 30%	RS12	120	Sous-région 3a-S
			ERE-ERP	Movenne	PRU-PIB-EPR	Mi-pente , haut de pente	30% et +	RT12	5	
			ERE-TIC-RUP, ERE	Riche	FRN-ERS-SAB	Mi-pente , terrain plat	0 à 15%	MF15	37	Sous-région 3a-M
	Variable	Très mince	ERP, ERE-ERP, ERE	Moyenne	BOJ-ERR-SAB	M-pente , bas de pente	9% et +	MJ10	29	Sous-région 3b-M
			VAM-SPS, DIE-PLS	Pauvre	EPN-SAB-BOP		0 à 8%	RE25	11	
			AUR, AUR-SPS	Pauvre	EPR-EPN-SAB		D à 8%	RE25S	2	
			PLS, CLB	Pauvre	SAB-BOP-EPN		9 à 15%	RS25	2	
			AUR-SPS	Pauvre	SAB-EPN-ERR		0 48%	RS25S	5	
			AUR-SPS, VAM-DIE	Paume		Terrain plat , bas de pente	4 à 15%	RS55	6	
ubhydrique	1		ERE-ERP-TIC, ERE-VIL-TIC	Moyenne		1	9 à 15%	FE35	79	
	Moyenne	Mince à épais	ERE-ERP, ERE, ERP	Moyenne		Haut de pente , mi-pente	9 à 30%	F562	98	Sous-région 3a-M et 3
	1				T		0 à 15%	 	50	Sous-région 3a-S
			ERE-TIC-RUP, ERE-OXM, ERE-VIL-TK	1.		1	0 à 8%	MS25	21	Sous-region 3a-S
	l		ERE-OXM, ERE-TIC-OXM	Moyenne		Terrain plat, bas de pente	1 2 2 2 12	RS15	60	1
			ERE-OXM, ERE-TIC-RUP	Moyenne	THO-SAB-BOJ	T	0 à 15%	FE25	44	Sous-région 3a-S
			ERE-ERP-TIC, ERE-VIL-TIC	Riche	ERS-HEG-BOF		9 à 30% 4 à 30%		42	Sous-région 3a-M et 3
	<u> </u>		ERE-VIL-TIC, ERE-TIC-RUP	Riche	T	Mi-pente , bas de pente		FE60	14	
		Très mince	ERE-ERP	Moyenne		Haut de pente	9 à 50%	·	_	
		Minéral	SPS-ORS, CLB, SPS	Pauvre	EPN-MEL	Terrain plat, bas de pente	0 à 8%	RE37	4	
	i		TIC-RUP, ERE-OXM	Moyenne	SAB-BOP-PET	·	048%	RS37	12	Sous-région 3a-S
	Variable		VAM-SPS, SPS, SPS-GRS	Pauwre	EPN-MEL	Terrain plat	0 23%	RE39	20	ļ
Hydrique		Minéral ou organique	AUR-RUP, AUR-SPS	Moyenne	THO-SAB	Terrain plat	0 4 3%	RC38	29	
			ERE-OXM	Moyenne	THO-SAB-BOP	Bas de pente	0 à 8%	RS18	5	
			ERE-TIC-RUP, ERE-OXM, AUR-SPS	Moyenne	SAB-BOJ-THO	Bas de pente , terrain plat	0 4 8%	MJ28	87	ļ
	NA ⁽²⁾	Organique	AUR-SPS,AUR-RUP	Pauvre	EPN-SAB	Terrain plat	0 43%	RS38	29	Sous-région 3a-S
		Organique	ERE-OXM, SPS-GRS	Pauwre	SAB-EPN	Terrain plat, replat	0 à 8%	RS39	7	ļ
			sance en nombre de relevés lépôt organique (NA : non appliquabl					TOTAL	2047	

mésique (FE52) vient ensuite avec 4.5 % des relevés et montre une distribution semblable au type FE22, sauf pour la sous-région 3b-T où il n'est pas plus fréquent qu'un autre type écologique. Finalement, la sapinière à thuya sur dépôt mince à épais, de texture moyenne et de drainage mésique (RS12) est le seul type écologique résineux important avec 5 % des relevés surtout concentrés dans la sous-région 3a-S. À l'exception des types FE62 et MJ12, les autres types écologiques les plus fréquents sont des variantes des types déjà mentionnés.

Le tableau 8.3 montre les relations entre les types écologiques, les essences dominantes et les perturbations d'origine qui leur sont associées.

En général, les relevés réalisés présentent un portrait assez homogène en ce qui a trait à la composition en essences des types écologiques appartenant à une même végétation potentielle. Seules certaines espèces seront plus ou moins abondantes selon le régime hydrique rencontré; par exemple, le frêne noir présente un indice FA toujours plus abondant dans les types écologiques subhydriques et hydriques.

Les données sur les types écologiques de couverts feuillus montrent que dans le cas de l'érablière à tilleul (FE2), le tilleul, le frêne d'Amérique, le cerisier tardif et le bouleau jaune présentent un meilleur indice FA dans le type subhydrique. Dans le cas de l'érablière à bouleau jaune (FE3), la pruche est nettement plus abondante sur les sites où le sol est très mince. Pour ce qui est de la végétation potentielle de l'érablière à chêne rouge (FE6), l'indice FA du pin rouge est beaucoup plus élevé sur les sites où le sol est épais.

Dans le cas des végétations potentielles de couverts mélangés, le thuya montre, en général, un indice FA plus élevé pour les types où le drainage est subhydrique ou hydrique. Dans le cas de la bétulaie jaune à sapin et érable à sucre (MJ1), le hêtre, l'épinette rouge et la pruche ont un indice FA supérieur sur les sites où le sol est très mince. Sur les sites à sapinière à bouleau blanc (MS2), le pin rouge présente un indice élevé sur les sites couverts d'un sol grossier et bien drainé.

Finalement, comme pour les précédentes, les végétations potentielles de couverts résineux affichent généralement des indices FA plus élevés pour le thuya et le frêne noir dans les types écologiques subhydriques et hydriques. Le mélèze affiche également un indice FA élevé sur les sites hydriques. Dans le cas de la pessière à mousses ou à éricacées, le pin gris est lié au sol de texture grossière et l'épinette rouge est liée aux sites enrichis par le seepage. Pour la sapinière à épinette noire (RS2), c'est le bouleau jaune qui présente un indice FA élevé sur les sites à seepage.

Concernant les relations entre les types écologiques et leurs origines, ce sont surtout les types sur sol très mince (RE20, RS50, RS20, MS20, FC10) qui sont liés aux origines de feux.

Le tableau 8.4 nous présente la liste des types écologiques en relation avec leur régime hydrique et la richesse relative des groupes d'espèces indicatrices qui leur sont le plus fréquemment associés. On remarque que les types écologiques de régime hydrique mésique sur dépôt de texture moyenne sont les plus fréquents sur le territoire du sous-domaine avec plus de 56 % des relevés. L'érablière à bouleau jaune et l'érablière à tilleul se démarquent nettement comme les végétations potentielles les plus importantes sur ces milieux physiques, sans distinction pour l'une ou l'autre des sous-régions écologiques. Les types écologiques de milieux subhydriques sur dépôts de texture moyenne sont les deuxièmes en importance avec 16 % des relevés surtout réalisés dans des végétations potentielles feuillues et mélangées feuillues. Finalement, les types écologiques sur sol très mince sont troisièmes en importance avec 11 % des relevés.

On note également que plusieurs types écologiques apparentés se trouvent sur des sites semblables au niveau des caractéristiques de la pente (FE22, FE32, FE52, FE62). Il devient important de bien connaître les compositions en essences de ces différents types pour pouvoir les distinguer.

En général, on rencontre les types écologiques xériques sur les pentes moyennes. Par contre, les types subhydriques peuvent être observés sur les bas de pente et finalement les types hydriques se trouvent sur les terrains plats et les dépressions. La sère physiographique illustre cette situation pour chacune des sous-régions écologiques.

8.3. Description de types écologiques

FC10 (25) Chênaie rouge sur dépôt très mince, de texture variée, au drainage xérique à hydrique

Ce type écologique est un de ceux qui distingue le sous-domaine de l'ouest du sous-domaine de l'est. Il occupe le plus souvent des sites en mi ou haut versant sur haut de pente couverte d'un dépôt le plus souvent mince à très mince et très bien drainé. Le pin blanc, le sapin et l'érable rouge accompagnent le chêne rouge; tandis que l'érable à épis et les vacciniums occupent le plus souvent le sous-bois.

FE20 (0) - Érablière à tilleul sur dépôt très mince, de texture variée et au drainage xérique à hydrique

Ce type écologique est surtout présent dans les sous-régions 3a-M et 3b-M et il est regroupé au type FE22.

FE21 (0) - Érablière à tilleul sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Ce type écologique est plus fréquent dans les sous-régions méridionales 3a-M et 3b-M; il est regroupé au type FE22.

FE22 (221) - Érablière à tilleul sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique ainsi que le type FE32 sont les plus importants sur ce territoire. Particulièrement fréquents dans les sous-régions méridionales (3a-M et 3b-M) et dans la sous-région 3b-T, ce type occupe des sites où les conditions sont moyennes. On le rencontre quelques fois sur des dépôts très minces (FE20) ou sur des dépôts de texture grossière (FE21) mais on les regroupe au type FE22. L'érable à sucre, l'érable rouge, le bouleau à papier, le tilleul et le frêne d'Amérique sont dans l'ordre les essences les plus fréquentes dans le couvert. Le tilleul, le frêne d'Amérique, le cerisier tardif et le noyer cendré doivent occuper ensemble plus de 5 % du couvert.

FE25 (44) - Érablière à tilleul sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type écologique est surtout concentré dans les sous-régions méridionales 3a-M et 3b-M; c'est la variante subhydrique du type FE22 et on le rencontre souvent en position adjacente à celui-ci mais il est beaucoup moins fréquent. Les mêmes caractéristiques que pour le type FE22 s'appliquent pour ce type en ce qui a trait à la présence des essences à plus de 5 %.

FE30 (50) - Érablière à bouleau jaune sur dépôt très mince, de texture variée, au drainage xérique à hydrique

Ce type écologique est le plus abondant du sous-domaine sur les sites en haut de pente ou sur les sommets où le sol est très mince. C'est conditions sont plus fréquentes dans les sous-régions 3b-M et 3b-T.

FE31 (15) - Érablière à bouleau jaune sur dépôt mince à épais, de texture grossière, au drainage xérique-mésique

Ce type écologique est peu important dans le sous-domaine. Il est surtout présent dans les sous-régions 3b-M et 3b-T où il occupe des sites couverts de dépôts fluvioglaciaires de texture grossière.

FE32 (222) - Érablière à bouleau jaune sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique ainsi que le type FE22 sont typiques du sous-domaine. Ils sont de loin les types les plus fréquents sur le territoire. Toutefois, à cause du climat, le type FE32 est moins abondant dans la sous-région septentrionale 3a-S où il est remplacé par la bétulaie jaune à sapin (MJ22) et dans la sous-région méridionale 3a-M où le type FE22 domine. Il occupe des sites en mi-pente, couverts de till le plus souvent épais dont le drainage est bon ou modéré.

FE32 H (55) - Érablière à bouleau jaune sur dépôt mince à épais, en haut versant, de texture moyenne et de drainage mésique

Ce type écologique se distingue du type FE32 du fait qu'il occupe spécifiquement des positions de sommet et de haut de pentes sur till de plus de 25 cm d'épaisseur où le drainage est de bon (20) à excessif (00). Dans les peuplements de fin de succession, le hêtre devrait se trouver en plus grande abondance. Dans la sous-région 3a-S, ce type n'est présent que dans l'extrême sud du territoire où le hêtre est à la limite de son aire de distribution.

FE35 (79) - Érablière à bouleau jaune sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type écologique occupe les bas de pentes ou les mi-pentes concaves souvent enrichis par le drainage latéral. Les groupes d'espèces indicatrices à tiarelle (TIC) et à rubus pubescens (RUP) caractérisent bien ce type. Sa distribution est assez uniforme quoiqu'un peu plus abondante dans la sous-région 3a-M.

FE50 (0) - Érablière à ostryer sur dépôt très mince, de texture variée et de drainage xérique à hydrique

Ce type écologique est rare dans le sous-domaine et il est regroupé au type FE52.

FE52 (108) - Érablière à ostryer sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est surtout fréquent dans les sous-régions méridionales 3a-M et 3b-M sur des sites en mi-pente ou haut de pente le plus souvent sur des pentes modérées à fortes où le till est plus ou moins épais et le drainage est bon (20) ou modéré (30). L'ostryer de Virginie doit occuper au moins 10 % du couvert.

FE55 (0) - Érablière à ostryer sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type écologique est très rare et il est regroupé au type FE52.

FE60 (14) - Érablière à chêne rouge sur dépôt très mince, de texture variée, au drainage xérique à hydrique

Plus fréquent dans les sous-régions 3a-T et 3b-M, ce type écologique occupe des sites en moyen et haut versants où le sol est très mince et le drainage va de bon (20) à excessif (00). Le chêne rouge doit occuper au moins 10 % du couvert. L'érable rouge, l'érable à sucre et le hêtre complètent habituellement le couvert arborescent.

FE62 (98) - Érablière à chêne rouge sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est surtout abondant dans les régions 3a-M et 3a-T probablement parce que le climat est un peu plus sec que dans les sous-régions plus à l'est. Dans la sous-région 3a-T, il occupe surtout des sites en mi-versant sur des mi-pentes couvertes de till moyennement épais à mince et, où le drainage est de bon à modéré. Dans la sous-région 3a-M, on rencontre le type FE62 surtout sur des sites en moyen ou haut versant sur des mi-pentes ou des hauts de pentes couvertes de till moyennement épais à mince et bien drainé. On retrouve dans le couvert des essences plus thermophiles comme l'ostryer de Virginie. Le chêne rouge doit atteindre au moins 10 % de couverture.

FO18 (3) - Ormaie à frêne noir sur dépôt minéral ou organique, de drainage hydrique minérotrophe

Ce type écologique occupe fréquemment de petites superficies, le plus souvent sur des dépôts alluviaux où le drainage est imparfait (40). Ce sont surtout des sites riches où on retrouve des essences comme l'érable argenté, le frêne noir, le peuplier deltoïde et l'orme d'Amérique.

Mai 1999 147

MF15 (14) - Frênaie noire à sapin sur dépôt mince à épais de texture moyenne et de drainage subhydrique

Ce type écologique est assez fréquent mais ne couvre généralement qu'une mince bande le long des rivières ou des ruisseaux. On le rencontre le plus souvent sur des dépôts fluviatiles ou alluviaux ainsi que sur du till où le drainage est imparfait. Le frêne noir doit occuper au moins 10 % du couverture.

MF18 (0) - Frênaie noire à sapin sur dépôt minéral ou organique, de drainage hydrique minérotrophe

Ce type écologique est rare et il est regroupé au type MF15.

MJ10 (29) - Bétulaie jaune à sapin et érable à sucre sur dépôt très mince, de texture variée, au drainage xérique à hydrique

Ce type écologique est peu fréquent et occupe des sites en moyen ou bas versant, le plus souvent en mi-pente assez prononcée où le sol est très mince et le drainage est bon. Ces sites sont souvent trop pauvres pour soutenir la végétation potentielle de l'érablière à bouleau jaune.

MJ11 (0) - Bétulaie jaune à sapin et érable à sucre sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Ce type écologique est très rare et il est regroupé au type MJ12.

MJ12 (88) - Bétulaie jaune à sapin et érable à sucre sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est assez abondant et très bien réparti sur le territoire. Il occupe le plus souvent des sites en moyen ou en bas versant couverts de dépôts de till moyennement épais. Les conditions générales (exposition, pierrosité) sont moins favorables pour le type FE32 mais la présence de l'érable à sucre démontre une plus grande richesse que les sites supportant le type MJ22.

MJ15 (42) - Bétulaie jaune à sapin et érable à sucre sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type est bien réparti sur le territoire et représente le pendant subhydrique du type MJ12. Il occupe des sites en bas versant sur des mi-pentes ou des bas de pentes couvertes de till moyennement épais où le drainage est modéré ou imparfait.

MJ20 (31) - Bétulaie jaune à sapin sur dépôt très mince, de texture variée et de drainage xérique à hydrique

Ce type écologique est présent dans toutes les sous-régions sauf dans la sous-région méridionale 3a-M où les conditions sont plus favorables. Il occupe des sites en moyen ou en bas versant sur des mi-pentes assez prononcées, couvertes de till très mince au drainage bon à rapide. Le sapin, le bouleau à papier et l'érable rouge sont les essences les plus fréquentes.

MJ21 (31) - Bétulaie jaune à sapin sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Peu fréquent, ce type est surtout concentré dans les sous-régions 3a-S et 3a-T. On le rencontre le plus souvent sur des sites en bas versants sur des terrains plats couverts de dépôts fluvioglaciaires habituellement bien drainés.

MJ22 (142) - Bétulaie jaune à sapin sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est le plus fréquent des types de couverts mélangés sur ce territoire. Il est surtout abondant dans la sous-région 3a-S où il est typique et occupe surtout des sites en mi-versant sur des mi-pentes moyennes et couvertes de till moyennement épais où le drainage est bon à modéré. Dans la sous-région 3a-T, on le rencontre sur des terrains de moyen et de bas versants en mi-pente couverte de dépôts de till d'épaisseur moyenne et de drainage bon à modéré. Le bouleau jaune, le bouleau à papier, l'érable rouge et le sapin sont les essences les plus importantes dans le couvert.

MJ25 (50) - Bétulaie jaune à sapin sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type est la variante subhydrique du type MJ22 et il possède sensiblement la même distribution. On le rencontre le plus souvent en position adjacente au type MJ22 sur les bas de pentes couvertes de till où le drainage est imparfait (40) ou modéré à seepage (31). On y rencontre à peu près les mêmes essences que dans MJ22 mais la présence des groupes d'espèces indicatrices à tiarelle (TIC) et à rubus pubescens (RUP) indique que l'on est en présence d'un site plus riche.

MJ28 (87) - Bétulaie jaune à sapin sur dépôt minéral ou organique, de drainage hydrique minérotrophe

Ce type écologique est distribué de façon uniforme sur tout le territoire et il occupe surtout les sites en bas versant, en bas de pente ou sur des dépressions

ouvertes et qui sont couvertes de sol organique où le drainage est habituellement mauvais mais où l'eau continue à circuler en favorisant un apport d'éléments minéraux. Le thuya et le frêne noir s'ajoutent aux essences habituelles de la végétation potentielle MJ2. L'aulne rugueux est souvent présent dans le sous-bois.

MS20 (4) - Sapinière à bouleau blanc sur dépôt très mince, de texture variée, au drainage xérique à hydrique

Ce type écologique est très rare sur ce territoire et on l'observe surtout sur des sites en sommet où le sol est très mince et le drainage rapide. Certains sites identifiés MS20 peuvent être des sites à MJ20 où le bouleau jaune a complètement disparu après une perturbation majeure.

MS21 (27) - Sapinière à bouleau blanc sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Ce type écologique est plus fréquent et il est surtout concentré sur les hautes terrasses couvertes de dépôts fluvioglaciaires (2BE). Il peut être identifié sur un site pouvant supporter le type MJ21 mais où le bouleau jaune a complètement disparu pour différentes raisons. Le bouleau blanc, le sapin et le pin rouge sont les essences les plus fréquentes sur ces sites.

MS22 (27) - Sapinière à bouleau blanc sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est peu abondant et remplace le type MJ22 sur les sites où les conditions y sont défavorables, comme les vallées fermées qui ont de la difficulté à évacuer les masses d'air froid. On rencontre le type MS22 surtout dans la sous-région septentrionale 3a-S, sur des sites en mi-versant, sur des mi-pentes couvertes de till d'épaisseur moyenne bien drainées. Le bouleau à papier, le sapin et le peuplier faux-tremble dominent habituellement le couvert arborescent. Les groupes d'espèces indicatrices plus pauvres (ERE DIE, ERE CLB, CLB) occupent le sous-bois.

MS25 (21) - Sapinière à bouleau blanc sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type écologique est surtout concentré dans la sous-région septentrionale 3a-S et, il occupe des sites en bas ou moyen versant, en mi-pente ou bas de pente couvertes de till d'épaisseur moyenne où le drainage est imparfait (40) ou modéré à seepage. L'épinette noire vient s'ajouter aux autres essences (SAB, BOP, PET) pour compléter le couvert. L'absence du bouleau jaune peut nous amener à confondre ce type avec le type MJ25.

RB12 (3) - Pessière blanche ou cédrière issue d'agriculture sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique a été créé pour identifier les sites qui ont été utilisés à des fins agricoles et qui, à la suite de leur abandon, ont été colonisés par une végétation de pessières blanches ou de cédrières. Ces sites ont, en général, un potentiel pour supporter les types FE32, MJ12 ou MJ22.

RB15 (0) - Pessière blanche ou cédrière issue d'agriculture sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Les mêmes caractéristiques que pour le type RB12 s'appliquent, sauf qu'on le trouve sur des mi-pentes concaves ou des bas de pentes bien alimentées en eau (31).

RC38 (29) – Cédrière tourbeuse à sapin sur dépôt organique, de drainage hydrique minérotrophe

Ce type écologique est surtout concentré dans les sous-régions 3b-M et 3b-T. Il occupe le plus souvent des terrains plats ou des dépressions couvertes de sol organique où le drainage est mauvais (60) mais où l'eau continue à circuler et à alimenter le site en éléments minéraux confirmant ainsi une certaine richesse. L'abondance du thuya le distingue du type RS38.

RE20 (20) - Pessière noire à mousses ou à éricacées sur dépôt très mince, de texture variée et de drainage xérique à hydrique

Comme à peu près tous les types écologiques de couvert résineux, ce type est surtout présent dans la sous-région septentrionale 3a-S. Il occupe des sites en haut et moyen versant, sur des sommets ou des hauts de pentes assez fortes, couvertes de dépôts très minces. Les groupes d'espèces à éricacées (VAA, VAM) témoignent de la pauvreté de ces sites.

RE21 (18) - Pessière noire à mousses ou à éricacées sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Ce type écologique est peu fréquent sur le territoire. Il occupe toujours des sites en bas versants sur des terrains plats couverts de dépôts fluvioglaciaires (2BE) bien drainés. Le pin gris et/ou l'épinette noire domine (nt) le couvert arborescent; les éricacées (VAA, VAM) et les mousses (PLS) confirment que nous sommes en présence d'un site pauvre.

RE22 (12) - Pessière noire à mousses ou à éricacées sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est très rare dans tout le sous-domaine; sauf dans la sous-région septentrionale 3a-S où il occupe des sites en mi-versant sur des milieux de pentes couvertes de till moyennement épais et où le drainage est bon ou modéré. L'historique des perturbations conditionne grandement les types écologiques sur ces sites qui peuvent aussi supporter une sapinière à épinette noire (RS22) ou une sapinière à épinette rouge (RS52).

RE25 (11) - Pessière noire à mousses ou à éricacées sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type écologique est surtout concentré dans les régions 3a-S et 3a-T. Il est la version subhydrique du type RE22.

RE25S (2) - Pessière noire à mousses ou à éricacées sur dépôt mince à épais, de texture moyenne et de drainage subhydrique avec seepage

Ce type écologique est très rare et il se distingue du type RE25 du fait qu'on le rencontre sur des sites susceptibles de bénéficier de l'effet d'enrichissement du sol par le seepage. On le rencontre sur des sites où la pente arrière est importante. L'aulne rugueux est le principal indicateur de la présence de ce phénomène.

RE37 (4) - Pessière noire à sphaignes, sur dépôt minéral, de drainage hydrique ombrotrophe

Ce type écologique est très rare et il occupe, habituellement, des dépressions fermées mal drainées (50, 60) et couvertes de till plus ou moins épais.

RE38 (0) - Pessière noire à sphaignes, sur dépôt minéral ou organique, de drainage hydrique minérotrophe

Ce type écologique est très rare et il occupe les mêmes positions que le type RS38.

RE39 (20) - Pessière noire à sphaignes, sur dépôt organique, de drainage hydrique ombrotrophe

Ce type écologique est surtout présent dans les sous-régions 3a-S et 3b-T. Il occupe des terrains plats ou des dépressions couvertes de sol organique épais et très mal drainé. L'épinette noire et le mélèze dominent la strate arborescente et les sphaignes occupent habituellement le sous-bois.

152

RP10 (0) - Pinède blanche ou pinède rouge sur dépôt très mince, de texture variée et de drainage xérique à hydrique

Ce type écologique est probablement sous-échantillonné sur ce territoire parce qu'il occupe des escarpements inaccessibles et non sondés. Il est regroupé au type RP12.

RP11 (0) - Pinède blanche ou pinède rouge sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Ce type écologique est peu fréquent et il occupe des sols couverts de matériaux fluvioglaciaires grossiers (2BE, 2A) pauvres et bien drainés. Les vacciniums occupent le sous-bois. Ce type est regroupé au type RP12.

RP12 (21) - Pinède blanche ou pinède rouge sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est surtout concentré dans les sous-régions 3a-S et 3a-T où on le rencontre sur des sites en bas ou moyen versant sur des mi-pentes couvertes de till mince où le drainage est bon ou très bon. Le pin blanc et/ou le pin rouge occupe (nt) au moins 20 % du couvert.

RS10 (36) - Sapinière à thuya sur dépôt très mince, de texture variée et au drainage xérique à hydrique

Ce type écologique est plus fréquent dans les sous-régions 3a-S et 3b-M. Il se distingue des autres sapinières par la présence de thuya à plus de 10 % du couvert. Ce type occupe des sites en bas ou moyen versant, en mi-pente ou haut de pente où la pente est assez forte et le dépôt de till est très mince et bien drainé. La présence des groupes d'espèces indicatrices à érable à épis (ERE) nous indique des conditions de richesse relative plus élevée que dans les autres types de couvert résineux.

RS11 (21) - Sapinière à thuya sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Ce type écologique est surtout fréquent dans la sous-région 3a-S sur des sites en bas versant, le plus souvent des terrains plats couverts de dépôts fluvioglaciaires (2BE, 2A) ou parfois de dépôts glaciolacustres (4GS) où le drainage est bon ou modéré. Le thuya occupe au moins 10 % du couvert et les groupes d'espèces indicatrices à érable à épis (ERE) indiquent une certaine richesse du site.

153

RS12 (120) - Sapinière à thuya sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est le plus fréquent des types résineux et on le rencontre surtout dans la sous-région 3a-S. Il se distingue de la bétulaie jaune à sapin (MJ22) du fait que le thuya occupe au moins 10 % du couvert en plus d'être plus abondant que le bouleau jaune. En plus du thuya, le bouleau jaune, le sapin, le bouleau à papier et l'érable rouge forment le couvert arborescent. Les espèces comme l'érable à épis (ERE) et l'érable de Pennsylvanie (ERP) indique que nous sommes en présence de sites moyennement riches.

RS15 (60) - Sapinière à thuya sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Comme pour le type RS12 dont il est la variante subhydrique, ce type écologique est surtout fréquent dans la sous-région 3a-S. On le rencontre sur des sites en bas ou moyen versant sur des mi-pentes ou des bas de pentes concaves, couvertes de till moyennement épais où le drainage est légèrement déficient (31, 40, 41) et parfois enrichissant pour le site (seepage). Les mêmes caractéristiques que pour le type RS12 s'appliquent.

RS18 (5) - Sapinière à thuya sur dépôt minéral et de drainage hydrique minérotrophe

Ce type écologique est très rare et occupe habituellement de petites dépressions ouvertes, couvertes de till où le drainage est déficient (50, 51) mais où l'eau continue à circuler. Le thuya occupe au moins 10 % du couvert arborescent.

RS20 (8) - Sapinière à épinette noire sur dépôt très mince, de texture variée et de drainage xérique à hydrique

Ce type est rare sur ce territoire et se retrouve sur des sites en mi-versant sur des sommets couverts de sol très mince et où le drainage est bon ou rapide. La plus ou moins grande abondance de sapin (>25 %) distingue ce type du type RE20.

RS21 (0) - Sapinière à épinette noire sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Ce type écologique est regroupé au type RS22 et les mêmes remarques s'appliquent en ce qui concerne l'importance du sapin dans le couvert (≥ 25 %).

154

RS22 (21) - Sapinière à épinette noire sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type est peu fréquent et il occupe différents sites en moyen ou haut versant sur des sommets ou des mi-pentes couvertes de till ou encore sur des terrains plats couverts de dépôts fluvioglaciaires de texture moyenne. Ce type est très près des types écologiques RE22 et RS52. Seules les proportions de sapin (> 25 %), d'épinette rouge (> 10 %) et d'épinette noire distinguent ces types entre eux.

RS25 (2) - Sapinière à épinette noire sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type écologique est très rare et il occupe habituellement des sites adjacents au type RS22, un peu plus bas sur la pente.

RS25S (5) - Sapinière à épinette noire sur dépôt mince à épais, de texture moyenne et de drainage subhydrique avec seepage

Les mêmes commentaires que pour le type RS25 s'appliquent. La présence d'une longue pente arrière favorise le phénomène de seepage. L'aulne rugueux est le principal indicateur de ce phénomène.

RS37 (12) - Sapinière à épinette noire et sphaignes sur dépôt minéral, de drainage hydrique ombrotrophe

Ce type écologique est plus abondant dans la sous-région septentrionale 3a-S. Il occupe des sites en bas ou moyen versant, sur des terrains plats ou des dépressions couvertes surtout de till mais quelques fois de dépôts fluvioglaciaires (2A, 2B) ou glaciolacustres (4GA, 4GS) où le drainage est toujours déficient (50). Les essences comme le bouleau à papier, l'érable rouge et le peuplier faux-tremble dans le couvert et un sous-bois composé surtout de groupes à érable à épis (ERE) ou à tiarelle (TIC) différencient ces sites de ceux plus pauvres supportant le type RE37.

RS38 (29) - Sapinière à épinette noire et sphaignes sur dépôt minéral ou organique, de drainage hydrique minérotrophe

Pratiquement absent de la région 3c-M et plus fréquent dans la sous-région 3a-S, ce type écologique occupe surtout des sites en bas versant, le plus souvent des dépressions ouvertes couvertes de sol organique épais où le drainage est mauvais (50, 60) mais où l'eau continue à circuler en enrichissant le sol. Le sapin, l'épinette noire, le bouleau à papier et le peuplier faux-tremble domine le couvert dans des proportions variables. L'abondance de l'aulne rugueux sur ces sites les distingue du type RE38.

RS39 (7) - Sapinière à épinette noire et sphaignes sur dépôt organique, de drainage hydrique ombrotrophe

Ce type écologique est peu fréquent et occupe habituellement des sites mal drainés (60), souvent des dépressions fermées. La proportion de sapin (>25 %) classe ces sites dans les sapinières mais la dominance des sphaignes indique qu'il s'agit de sites pauvres.

RS50 (4) - Sapinière à épinette rouge sur dépôts très minces, de texture variée et de drainage xérique à hydrique

Ce type écologique est peu fréquent sur le territoire et il est surtout concentré dans la sous-région 3a-S. Celui-ci occupe des sites sur les sommets ou des hauts de pentes ou des escarpements où le sol est très mince et le drainage est de bon à excessif. La présence de l'épinette rouge distingue ce type du type RS20 et l'abondance du sapin (>25 %) le distingue du type RE20. Le sous-bois est composé surtout d'éricacées (VAA, VAM), indices de conditions plus pauvres.

RS51 (0) - Sapinière à épinette rouge sur dépôt mince à épais, de texture grossière et de drainage xérique-mésique

Ce type écologique est présent sur des terrains plats en bas versant, couverts de dépôts de texture grossière (2BE). Ce type est regroupé au type RS52. Les mêmes considérations sur les essences composant le couvert et qui sont mentionnées pour le type RS50 s'appliquent également pour ce type.

RS52 (18)- -Sapinière à épinette rouge sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est surtout présent dans la sous-région septentrionale 3a-S. Il occupe des sites en mi-pente ou en sommet, couverts de till moyennement épais et bien drainés (20, 30). Il s'agit, en général, de sites pauvres où dominent l'épinette rouge, le sapin et le bouleau à papier dans le couvert et les éricacées (VAA, VAM) dans le sous-bois.

RS55 (6)- -Sapinière à épinette rouge sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type écologique est la variante subhydrique du type RS52. On le rencontre surtout sur des sites en bas versant, sur des terrains plats, les bas de pentes ou des mi-pentes concaves où le dépôt est variable (1A, 2BE, 4GA) et le drainage imparfait (31, 40, 41). Les mêmes caractéristiques que pour le type RS52 s'appliquent en ce qui concerne le couvert arborescent et les espèces de sous-bois.

RT10 (0) - Prucheraie sur dépôt très mince, de texture variée et de drainage xérique à hydrique

Ce type écologique se distingue par l'abondance de la pruche ($\geq 10 \%$) dans le couvert des peuplements qu'il supporte. Il est regroupé au type RT12.

RT12 (5) - Prucheraie sur dépôt mince à épais, de texture moyenne et de drainage mésique

Ce type écologique est plutôt rare sur le territoire et il se distingue d'une sapinière par l'abondance de la pruche (>10 %). Le pin blanc, le sapin et le bouleau à papier accompagnent souvent la pruche dans le couvert arborescent.

RT15 (0) - Prucheraie sur dépôt mince à épais, de texture moyenne et de drainage subhydrique

Ce type écologique est peu fréquent et il est regroupé au type RT12. Même remarque que celui-ci, en ce qui concerne la composition en essences des peuplements qui s'y trouvent.

9. COMPLEXES PÉDOLOGIQUES

L'analyse des complexes pédologiques est en cours, cette section sera complétée ultérieurement.

		•	

10. SÈRES PHYSIOGRAPHIQUES

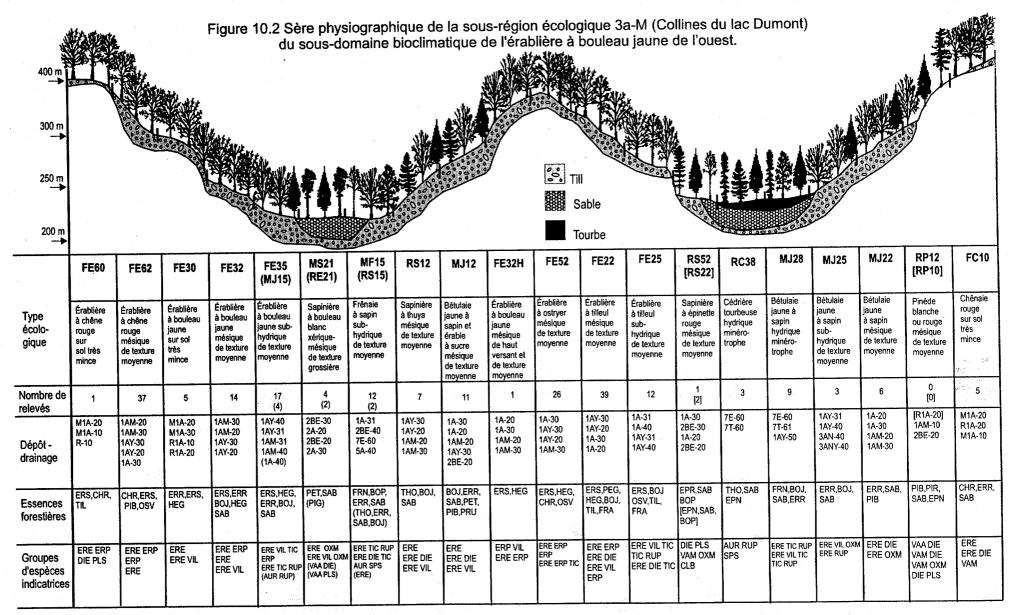
La sère physiographique est une représentation schématique de la répartition des types écologiques dans le paysage. Pour chacune des sous-régions écologiques, une sère physiographique a été réalisée pour exprimer les particularités de ce territoire. Une vingtaine des plus importants types écologiques pour chacune des sous-régions apparaissent sur leur sère respective.

10.1. Région écologique 3a (Collines de l'Outaouais et du Témiscamingue)

Cette région présente des variations latitudinales et des répartitions des types écologiques qui ont justifié la délimitation de trois sous-régions écologiques. La portion nord-ouest du territoire, de latitude plus élevée, délimite une sous-région septentrionale (3a-S, fig. 10.1). Les érablière à chêne rouge (FE6) et à tilleul (FE2) sont occasionnelles dans cette sous-région, tandis que les sapinières (RS1, RS2, RS5) et les pessières (RE2) y sont plus fréquentes que dans le reste du sous-domaine. La partie sud-est, de latitude et d'altitude beaucoup plus basses que le reste de la région forme une sous-région méridionale (3a-M, fig. 10.2). Les érablières à tilleul (FE2) y sont plus fréquentes que celles à bouleau jaune (FE32). Le reste de la région présente des caractéristiques typiques du sous-domaine de l'érablière à bouleau jaune de l'ouest (3a-T, fig. 10.3).

En général, sur les collines, coteaux et hautes collines de cette région écologique, les érablières à bouleau jaune mésique (FE32), à tilleul mésique (FE22) et à chêne rouge mésique (FE62) occupent les sites couverts de till épais et bien drainés. L'érable à sucre, le bouleau jaune et le hêtre dominent habituellement le couvert. Dans le cas du type écologique FE22, le tilleul et le frêne d'Amérique s'ajoutent aux essences de l'érablière à bouleau jaune pour occuper une portion plus ou moins grande du couvert. On remarque également un plus haut niveau de perturbation favorisant la présence de feuillus intolérants comme le peuplier à grandes dents (PEG), le peuplier faux-tremble (PET) et le bouleau à papier (BOP). En ce qui concerne le type FE62, le chêne rouge et le hêtre sont plus abondant et reflètent les conditions de sol plus mince et plus sec. Les types FE22 et FE62 dominent les sites mésiques dans la sous-région 3a-M. Sur les crêtes, on rencontre l'érablière à ostryer (FE52) qui se distingue par l'abondance de cette essence. Ce type est beaucoup plus abondant dans les sous-régions 3a-M et 3a-T. Dans la sous-région 3a-T, le type FE32 est typique et le plus abondant sur les sites mésiques. Sur les hauts de pentes convexes, le type FE32H se distingue par sa plus forte composition en hêtre. Ce type est plutôt rare dans la sous-région 3a-M.

Figure 10.1 : Sère physiographique de la sous-région écologique 3a-S (Collines du lac Kipawa) du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest

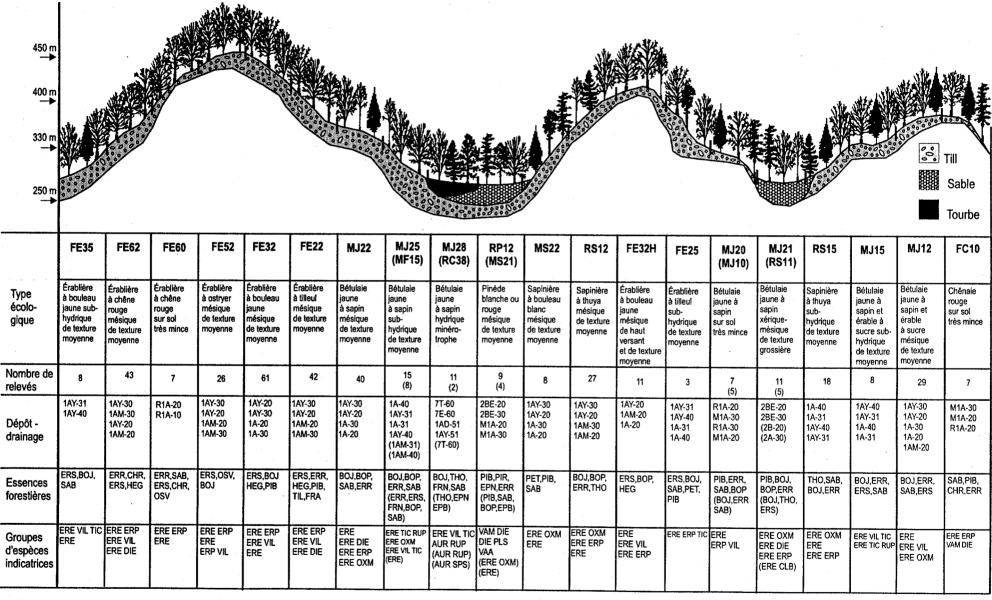

⁽¹⁾ Le type écologique entre parenthèses signifient qu'ils peuvent également occuper ces positions.

⁽²⁾ Les types écologiques entre crochets signifient qu'ils sont regroupés avec le type écologique du sommet de la colonne.

⁽³⁾ Les données sur les dépôts-drainage, les essences forestières et les groupes d'espèces indicatrices qui sont entre parenthèses se rapportent exclusivement au type écologique entre parenthèse.

⁽⁴⁾ Certains types écologiques couvrant une faible superficie ne figurent pas sur cette sère: FC10 (4), FE52 (2), FE62 (6), MF15 (5), MJ10 (1), MJ20 (8), MS20 (1), RE21 (5), RE25 (4), RE25S (1), RE37 (1), RE39 (6), RS10 (11), RS18 (1) RS20 (2) RS25 (1), RS25S (1), RS37 (6), RS30 (1), RS55 (2), RT12 (1).

⁽⁵⁾ Le type FE32H est possible seulement dans l'extrême sud de ce territoire où le hêtre est à la limite de son aire de distribution.


⁽¹⁾ Le type écologique entre parenthèses signifient qu'ils peuvent également occuper ces positions.

(2) Les types écologiques entre crochets signifient qu'ils sont regroupés avec le type écologique du sommet de la colonne.

(4) Certains types écologiques couvrant une faible superficie ne figurent pas sur cette sère: FE31 (1), MJ10 (2), MJ21 (2), MS20 (1), MS25 (2), RB12 (1), RE39 (1), RS20 (2).

⁽³⁾ Les données sur les dépôts-drainage, les essences forestières et les groupes d'espèces indicatrices qui sont entre parenthèses se rapportent exclusivement au type écologique entre parenthèse.

Figure 10.3 Sère physiographique de la sous-région écologique 3a-T (Hautes collines du lac Saint-Patrice) du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest.

⁽¹⁾ Les types écologiques entre parenthèses signifient qu'ils peuvent également occuper ces positions.

(3) Certains types écologiques couvrant une faible superficie ne figurent pas sur cette sère: FE30 (5), MS25 (5), RE20 (5), RE21 (2), RE22 (1), RE25 (5), RE37 (1), RE39 (3), RS10 (6), RS18 (1), RS20 (4), RS22 (6), RS25S (4), RS37 (3), RS38 (4), RS39 (2), RS52 (1), RT12 (1).

⁽²⁾ Les données sur les dépôts-drainage, les essences forestières et les groupes d'espèces indicatrices qui sont entre parenthèses se rapportent exclusivement au type écologique entre parenthèse.

La bétulaie jaune à sapin mésique (MJ22) est également très importante dans la région, particulièrement dans la sous-région septentrionale 3a-S où elle a le statut de type écologique typique et occupe la plupart des sites mésiques. Les peuplements appartenant à ce type écologique sont souvent issus d'un brûlis (43 %) et comportent une bonne proportion de bouleau à papier et d'érable rouge en plus du bouleau jaune et du sapin.

Entre les types FE32 et MJ22, on rencontre le type MJ12 qui assure la transition et se distingue du type MJ22 par la présence (>5 %) d'essences plus riches (ERS, CHR, HEG) qu'on retrouve dans les érablières. Ce type écologique a plus d'importance dans la sous-région 3a-T.

Le type écologique de la sapinière à bouleau blanc mésique (MS22) se rencontre surtout dans la sous-région 3a-S où il occupe des sites en bas versants de conditions mésiques. Dans les sous-régions 3a-T et 3a-M, la végétation potentielle de la sapinière à bouleau blanc (MS2) est plutôt confinée aux vallées profondes et fraîches. Elle peut également occuper des sites initialement destinés à la bétulaie jaune à sapin (MJ2) qui, suite à une perturbation (feux, coupes) ont vu disparaître le bouleau jaune. L'absence de semencier et/ou l'intensité de la perturbation pourraient expliquer ce phénomène. La présence du bouleau jaune devient le seul indicateur pour distinguer les végétations potentielles MS2 et MJ2.

Sur les sites mal drainés, la bétulaie jaune à sapin hydrique minérotrophe (MJ28) est très fréquente. Elle se rencontre surtout sur des sols organiques dans les sous-régions 3a-M et 3a-T et sur des sols minéraux dans la sous-région 3a-S.

Les types écologiques FE22, FE32, MJ12, MJ22 et MS22 ont leurs variantes subhydriques (FE25, FE35, MJ15, MJ25 et MS25) qui occupent presque toujours des sites en position adjacente et plus bas sur la pente. Ces sites sont habituellement plus riches et les groupes d'espèces indicatrices à rubus pubescens (RUP) et à tiarelle (TIC) confirment cette tendance. La plupart de ces types ont aussi, moins fréquemment, des variantes xériquemésiques sur dépôts de texture grossière (FE21, FE31, MJ11, MJ21, MS21) qui sont le plus souvent fluvioglaciaires (2A,2BE).

Les sites où le sol est très mince, qui supportent des végétations potentielles de couvert feuillus sont peu fréquent dans la sous-région 3a-S. Ce sont le plus souvent des chênaies rouges (FC10), des érablières à chêne rouge (FE60) ou des érablières à bouleau jaune (FE30) sur des sommets ou des hauts de pentes.

Mai 1999 165

En général, les sites qui supportent les types écologiques résineux et mélangés sont souvent moins riches pour des raisons historiques ou parce que les conditions (dépôt, drainage, exposition, climat) sont moins favorables.

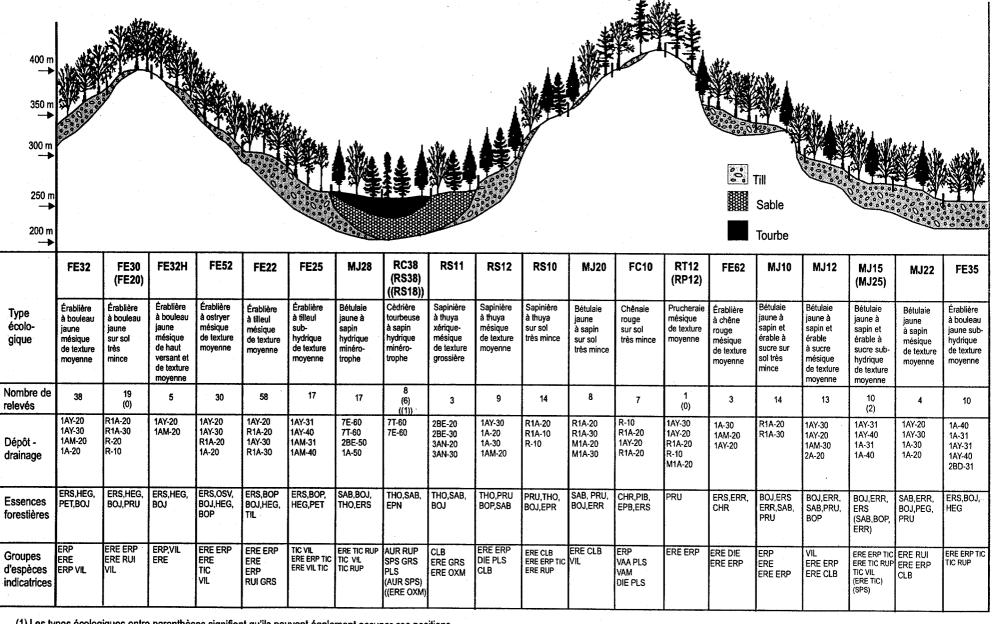
On retrouve des types écologiques de couvert résineux sur des sites mésiques (RS12, RS52, RS22, RE22) seulement dans la sous-région septentrionale 3a-S, désavantagée au niveau climatique par sa plus haute latitude et altitude moyenne. La fréquence et la sévérité des feux ont probablement aussi eu un impact en modifiant localement les caractéristiques du sol et en éliminant certaines sources de semences. Ailleurs dans la région, seule la sapinière à thuya (RS12) occupe des sites mésiques, et la plupart des types résineux occupent soit des sites mal drainés, soit des sites où le sol est de texture grossière ou très mince. Sur les sites hydriques minérotrophes (où l'eau continue à circuler), en plus de la bétulaie jaune à sapin (MJ28), on retrouve également la cédrière tourbeuse (RC38). Dans la sous-région septentrionale 3a-S, c'est la sapinière à épinette noire et sphaigne (RS38) qui occupe ces sites.

10.2. Région écologique 3b (Collines du lac Nominingue)

Pour bien faire ressortir l'influence du gradient latitudinal sur la végétation, la région a été scindée en deux par la délimitation d'une sous-région méridionale (3b-M, fig. 10.4). Les sites mésiques qui supportent des érablières à tilleul (FE22) sont typiques et plus abondants dans cette sous-région quoique les sites dominés par l'érablière à bouleau jaune mésique (FE32) sont aussi présents et se distinguent difficilement des premiers. Le relief de hautes collines de la sous-région 3b-M contribue à faire augmenter les superficies supportant des érablières à bouleau jaune (FE3) qui occupent plus souvent des sites en haut versant. Pour la même raison, on remarque également une plus grande proportion des types écologiques de milieu plus sec autant dans les couverts feuillus (FC10, FE52) que dans les couverts mélangés (MJ10) ou résineux (RS10). La région 3b-T (fig. 10.5) est typique du sous-domaine de l'érablière à bouleau jaune de l'ouest même si elle contient une assez forte proportion de sites mésiques couverts d'érablières à tilleul (FE22).

De façon générale, sur les collines et hautes collines de cette région écologique, les sites en mi-versant sur des mi-pentes couvertes de till moyennement épais et bien drainées sont colonisés par des érablières à bouleau jaune (FE32), des érablières à tilleul (FE22) et moins fréquemment des érablières à chêne rouge (FE62). L'érable à sucre (ERS), le hêtre (HEG) et le bouleau jaune (BOJ) sont majoritaires dans ces peuplements. Dans le cas de l'érablière à chêne rouge, ce dernier occupe parfois une proportion importante du couvert. Les érablières à ostryer mésiques (FE52) sont

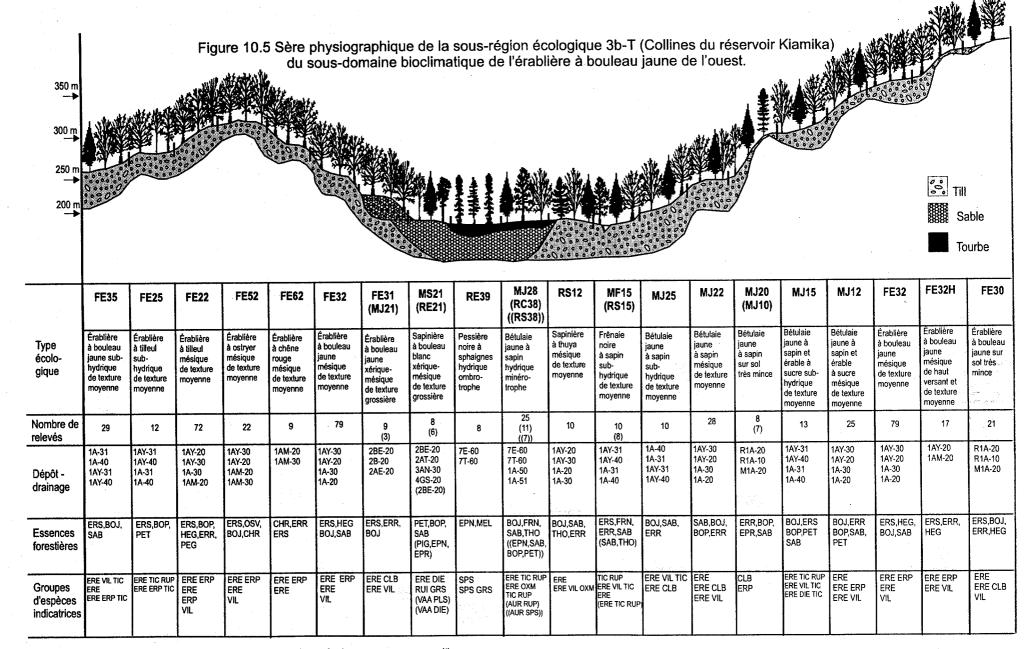
abondantes surtout dans la sous-région 3b-M, sur des crêtes couvertes de till plus ou moins épais et très bien drainées (20).


Finalement, sur les sommets convexes, l'érablière à bouleau jaune de haut versant (FE32H) occupe des sites où le dépôt de till est mince ou moyennement épais (FE30 si très mince) et la chênaie rouge (FC10) occupe les endroits où le dépôt est très mince et les conditions générales plus pauvres. Ces situations sont naturellement plus fréquentes dans la sous-région 3b-M avec son relief de hautes collines. Les types écologiques FE22 et FE32 ont souvent en position adjacente plus bas sur la pente, leurs pendants subhydriques FE25 et FE35. Le type écologique de l'érablière à bouleau jaune sur dépôt de texture grossière (FE31) est parfois présent dans les vallées couvertes de dépôts fluvioglaciaires (2A, 2BE)

Dans la sous-région 3b-M, les types écologiques de couverts mélangés sont plus souvent en bas versant où les conditions sont moins favorables. Les plus fréquents sont les bétulaies jaune à sapin (MJ22) et les bétulaies jaunes à sapin et érable à sucre (MJ12). Dans la sous-région 3b-T, ces types assurent la transition entre les types de couverts feuillus et ceux de couverts résineux. On les rencontre en mi-versant sur des mi-pentes couvertes de till d'épaisseur moyenne. Les types MJ10 et MJ20 sont fréquents dans la sous-région 3b-M comme les autres types sur sol très mince.

Sur les sites très mal drainé mais enrichis par l'écoulement de l'eau, la bétulaie jaune à sapin hydrique minérotrophe (MJ28) est le type de couvert mélangé dominant dans les deux sous-régions écologiques.

Finalement, on rencontre sur les bas de pentes, les plaines et les vallées couvertes de dépôt de texture grossière (2A, 2BE, 4GS), quelques types de couvert mélangé (MJ21, MJ11, MS21) plus ou moins riche. Le bouleau jaune, le sapin, l'érable rouge et le bouleau à papier dominent dans tous les types écologiques de couvert mélangé à l'exception des types de la sapinière à bouleau blanc (MS2) et de la frênaie noire à sapin (MF1).


Figure 10.4 Sère physiographique de la sous-région écologique 3b-M (Hautes collines du lac Simon) du sous-domaine bioclimatique de l'érablière à bouleau jaune de l'ouest.

⁽¹⁾ Les types écologiques entre parenthèses signifient qu'ils peuvent également occuper ces positions.

⁽²⁾ Les données sur les dépôts-drainage, les essences forestières et les groupes d'espèces indicatrices qui sont entre parenthèses se rapportent exclusivement au type écologique entre parenthèse.

⁽³⁾ Certains types écologiques couvrant une faible superficie ne figurent pas sur cette sère: FE31 (5), FE40 (0), FE42 (0), FE50 (0), FE60 (4), MF15 (2), MJ21 (1), MS21 (2), MS22 (4), MS25 (1), RE21 (3), RE37 (1), RE39 (2), RS15 (3), RS39 (1),

⁽¹⁾ Le type écologique entre parenthèses signifient qu'ils peuvent également occuper ces positions.

(2) Les données sur les dépôts-drainage, les essences forestières et les groupes d'espèces indicatrices qui sont entre parenthèses se rapportent exclusivement au type écologique entre parenthèse.

⁽³⁾ Certains types écologiques couvrant une faible superficie ne figurent pas sur cette sère: FC10 (2), FE60 (2), FO18 (3), MS20 (2), MS25 (3), RB12 (2), RE20 (1), RE25 (2), RE25S (1), RE37 (1), RP12 (2), RS10 (5), RS11 (2), RS18 (2), RS22 (5), RS25 (1), RS25 (1), RS37 (3), RS55 (1), RS55 (2), RS55 (4), RT12 (2).

Dans la sous-régions 3b-M, il y a peu de site propice au type écologique de couvert résineux. La sapinière à thuya mésique (RS12) est la plus fréquente et occupe le plus souvent des bas de pente couverts de till bien drainé. Dans la sous-région 3b-T, le type RS12 est également le plus important type de couvert résineux mésique et occupe sensiblement les mêmes sites où on trouve également des sapinières à épinette noire (RS22) et à épinette rouge (RS52). Sur les escarpements, on observe des peuplements de pin blanc (RP10) et de sapinière à thuya (RS10), plus fréquents dans la sous-région 3b-M à cause du relief. Quelques sites de la sous-région 3b-T, moins bien exposés et où le sol est très mince, supportent des types écologiques de la sapinière à épinette rouge (RS50) et de la pessière noire à mousses ou à éricacées (RE20).

Dans les deux sous-régions, les sites les plus propices pour les types écologiques résineux sont le plus souvent des sites mal drainés (50, 51, 60), régulièrement des dépressions couvertes de sol organique où l'on observe des cédrières tourbeuses (RC38), des sapinières à thuya (RS18) et des sapinières à épinette noire et sphaigne (RS38). Finalement, sur les terrains plats couverts de dépôts de texture grossière (2A, 2BE, 4GS) on rencontre des pinèdes à pin blanc ou pin rouge (RP11), des sapinières à thuya (RS11) ou des pessières noires à mousses ou à éricacées(RE21).

170

11. BIBLIOGRAPHIE

- MINISTÈRE DES RESSOURCES NATURELLES DU QUÉBEC, 1997b: Cartographie des districts écologiques. Direction de la gestion des stocks forestiers, 39 cartes 1/250 000.
- **ROBITAILLE, A.**, 1988: La cartographie des districts écologiques: normes et techniques. Ministère de l'Énergie et des Ressources, Service de l'inventaire forestier, Division écologique, revue et corrigée en 1989, 109 p.
- **ROBITAILLE, A., et M. ALLARD**, 1996 : Guide pratique d'identification des dépôts de surface au Québec, Sainte-Foy, Les Publications du Québec, 109 p.
- SAUCIER, J.-P., J.-F. BERGERON, P. GRONDIN et A. ROBITAILLE, 1998 : Les régions écologiques du Québec méridional (3° version) : un des éléments du système hiérarchique de classification écologique du territoire mis au point par le ministère des Ressources naturelles du Québec. L'aubelle, n° 124, 12 p.
- SAUCIER, J.-P., et D. ROBERT, 1995: Présentation du programme de connaissance des écosystèmes forestiers du ministère des Ressources naturelles du Québec. Revue forestière française, XLVII(1): 71-74.
- SAUCIER, J.-P., J.-P. BERGER, H. D'AVIGNON et P. RACINE, 1994: Le point d'observation écologique: normes techniques, Service des inventaires forestiers, Direction de la gestion des stocks forestiers, ministère des Ressources naturelles du Québec, 116 p.

Mai 1999 171

Annexes

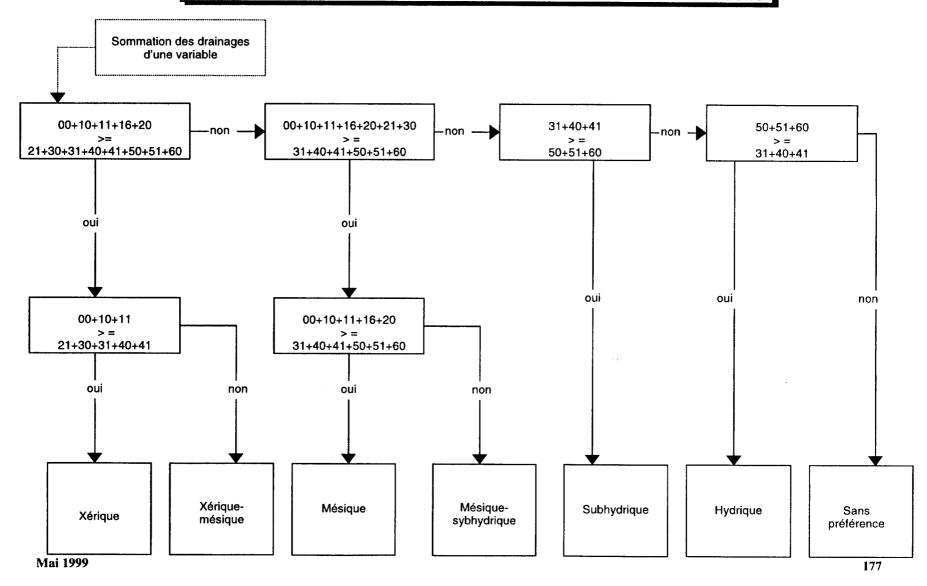
Annexe 1

	Nb. de							C					(2)					
Variables bio-physiques	rel.	AUR	CLB	DIE	DIR	TEDE	ERF	Group		ogiqu I PLS			_	1 000	1		1	
Drainage				1 0.0			. 2111	unc	OXII	PES	NUI	HUF	SMT	SPS	TIC	VAA	VAM	VIL
Moyenne des relevés	2047	15.8	33,2	26.5	3,2	48.5	25.8	16.4	T 23.3	15,4	9.9	14.8	3.5	22.4	18.3	14.3	15,1	24.6
00 (Excessif)	5	0,0	28,3	0,0	0,0	35.8			27.9				0.0	17.3				
10 (Rapide)	70	0,0	34,6		2,7	44.2	25,4	12,3	16.3		0,0			9,9	9,9		20,6	
11 (Rapide avec seepage)	1	0,0	0,0	0.0	0,0			0,0	0,0	0.0	0,0	0.0	0,0	0.0	24.5		0.0	0.0
16 (Complexe)	8	15,8	34,1	23,5	0,0				24,8	20,3	0,0	16,2	0,0	26,2			23,7	16.6
20 (Bon) 21 (Bon avec seepage)	807	2,2	31,4		3,2	47,1			15,5			8,8	0,0	7,6	14,3	16,2	13,1	24.0
30 (Modéré)	16 731	5,6 9,4	36.2		0,0	45,0			-			16,4	0,0	12.8	22,6		14,6	
31 (Moderé avec seepage)	36	15.6	26,2	28,7	7.8	52,3 53,5							0,0	10,7	16,4		14,3	27,5
40 (Imparfait)	169	24.7	36.2	24.3	5.4	51,7			23,2 35.8			22,1	0,0	8,5	30.4		8,5	35,7
41 (Imparfait avec seepage)	19	30.8	36,8	19,2	0,0	59.4		20.3	41.0		11,7		0,0	28,1	27,1		16,9	25,7
50 (Mauvais)	46	38,6	28.9	7.7	0.0	40.8			35.7		8.1	24.7	0.0	41.4	32,0		11,5	22,0
51 (Mauvais avec seepage)	9	21,1	24,5	0,0	12,9			36,8	32.0				0,0	33.0			18.8	17,1
60 (Très mauvais)	126	43,0	24,4	6,2	0,0	28,3	5.9	32,9	31,7		5.5	28.1	14.1	71.1	22.4		22.8	6.7
61 (Très mauvais avec seepage)	4	39,7	19,4	29,6	0,0	43,6	0,0	35,4				32.4	0.0	53.9	27.4		26.9	19.4
Situation sur la pente					-			-	1	1	0,0	7 02,4	1 0,0	1 30.3	27.4	1 20.0	20,9	19,4
Moyenne des relevés	2047	15,8	33,2	26,5	3,2	48.5	25.8	16.4	23.3	15,4	9,9	14,8	3,5	22.4	18,3	14,3	15 1	24.0
(Terrain plat)	224	30.9	34,5	28,7	0,0	41,3	8.0	31,4	30.8			22.0	9.7	48,6	20.6		15,1 25.2	24,6 16.6
2 (Escarpement)	13	0,0	30,0	24,3	6,2	50,6			10,7	26.2	11,1		0.0	0,0	10.0		18,8	9,2
(Sommet arrondi)	188	5,0	35,8	30,3	4,8	43.9	31,5	10,9	17,7	13.6		5,5	0,0	7,9	9,1	19.0	19,2	23,1
(Haut de pente)	353	4,9	33,7	28,3	1,7	47,2	32,1	11,2	15,8	11,5	6,4	8,5	0,0	8,6	12.3		13.6	22,9
	828	6,2	31,7	25,7	4,1	50,4		10,7	20,6	12,7	8,6	13,4	0,0	9,5	17,7	12,3	10,4	27,0
	92 260	18,9	36,5	26,7	0,0	50,9	23,7	13,9	27,1	12,0	12,4	12,7	0,0	21,1	18,6	10,2	11,9	28,0
	62	18,9	33,8	24,0	2,2	53,2	18.6	18,5	30,8	14.0	14,4	18,4	0,0	24,0	24,5	10,0	15,2	25,9
	27	50.4	26.9	17,8 13,1	0,0	47.5	20,5	21,1	30,6	20,7	2.8	26,2	6,1	41,2	30,4		15,8	22,5
/ersant	١ ١	30,4	20,9	13,1	0,0	33,1	10.5	32,5	31,8	17.0	13,6	20,7	7,7	57,8	23,5	10,0	17,6	12,6
	2047	15.0	00.0	00.5	0.0					,								
	746	15,8 20,4	33,2 34.8	26,5 28.0	3,2	48,5		16,4	23,3	15,4	9,9	14,8	3,5	22,4	18,3	14,3	15,1	24,6
	971	14.0	33,0	25.6	2,4	52,6 47,1	16.8 27,1	20.7	27,5	19,8	11,6	18,7	4,3	28,1	20,6	13,4	18,0	22,3
	330	6.4	29,7	25.6	4.8	42.3		13,5	22,3	13,2	9,0	13,1	3,4	20,5	16,6	14,3	13,5	25,5
lasse de pente		-	20,7	20,0	7,0	42.3	30,3	12,5	13,9	8,1	7,8	7,1	0,0	9,7	17,3	15,9	12,0	26,6
	2047	15,8	33,2	26.5	3,2	48.5	05.0	46.4	00.0	46.4						_		
	363	32,4	33.5	26.1	0.0	41,7	25,8 15,4	16,4 28,3	23,3 29,9	15,4	9,9	14,8	3,5	22,4	18,3	14,3	15,1	24,6
	428	13.8	36,2	26,9	5,3	50.0	23.8	14.2	28.3	23,8 14,4	11,4	20,5 15,7	8,3 0.0	46,9	21,0	15,7	22,1	17,5
(9 à 15%)	578	7.0	35,1	29.0	0.0	51,7	27,2	12,2	21,7	12.4	10,9	13,7	0.0	17,3 10,4	20,2 17,2	12,4	15,4	28,5
	498	5,3	30,1	25,5	2,5	48,7	29.0	11.6	16.4	11.5	7.5	11.5	0.0	7,3	16,4	13,7 14,8	13,4	26,0 24,7
	104	8,0	27,0	17,3	5,8	47,1	30,3	10,3	14,0	10,8	8.3	10.1	0,0	8.0	15,4	11.6	14,6	24,4
	76	2,6	24,3	21,5	5,7	45,5	33.6	10,3	14,5	18,0	8,0	11,5	0,0	9,2	16.4	19.8	12.8	14.7
ltitude														<u> </u>	10,7	10,0	12,0	17./
	2047	15,8	33,2	26,5	3,2	48,5	25.8	16.4	23,3	15,4	9,9	14.8	3.5	22.4	18.3	14.3	15.1	24,6
		22,8	42,9	45,6	0,0	53,6	0,0	39,9	29,9	15,8	0,0	26,6	0.0	27.7	33.6	8,3	25.1	19.8
		18,4	32,2	28,0	4,5	49,6	20,0	20,6	23,0	19,0	11,0	18,6	3.8	25,1	20.4	15.2	14,5	22.0
		14,5	34,5	26,1	2,0	48,4	28,3	12,5	23,9	13,1	8,8	11,8	3,5	21,0	16,0	14,4	16,0	25.0
	110	5,2	24,1	13,1	2,1	39,5	35,3	10,2	16,5	6,3	11,7	6,1	0,0	15,8	19,9	3,2	5,4	34,3
00 à 599m 4 00 à 699m 3		0,0	20,0	0,0	0,0	46,9	27,8	11,2	20,0	0,0	0,0	0,0	0,0	0,0	30,8	0,0	0,0	42,4
699m		0,0	12,9	0,0	0,0	63,5	0,0	0,0	25,8	0,0	0.0	19,2	0,0	0,0	23,1	0,0	0,0	33,7
épôt de surface		0,0	22,4	0,0	0,0	65.6	0,0	22,4	31,6	0,0	0,0	28,3	0.0	0,0	24,5	0,0	0,0	45,8
THE RESERVE THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED I	0.42																	
		15,8 11.0	33,2	26,5	3,2	48,5	25,8	16,4	23,3	15,4	9,9	14,8	3,5	22,4	18,3	14,3	15,1	24,6
		23.6	33,5 33,3	26,5 15,2	7,1	51,0 61,9	27,6	12,1	22,1	11,6	10,0	13,6	0,0	11,7	18,1	11,6		27,3
		0.0	26,5	30,3	0.0	49,3	14,6	17,3 21,0	27,5	11,0	0,0	24,1	0,0	26,4	25,3	11,1	11,4	17,4
	ŏ	3,5	34.6	39.4	3.5	50.9	22.6	16.4	23,9 25,1	0,0 15,3	11.0	13,4	0,0	7,1	21,0	27,9		20,0
3, 2BE 1		16,4	42.7	39,4	2.8	50,9	13,6	24.9	27,8	26.7	16.0	7,6 12,2	0,0	14,4	14,1	16,8		20,1
A, 3AC, 3AE, 3AN 9			26,3	18,3	0,0	49.7	7.5	28.9	34.0	7.5	13,7	21,3	0,0	23,6 0,0	17,3 27,1	22,3	24,8	19,2
GA, 4GAY 1	4 4			21,6	0,0	44,5	0,0	48.0	30.1	30.4	10.4	32.2	0.0	30.7	38.6	0,0 19,6	8,8 17,1	18,6 14,6
		30,1	35,8	20,8	0,0	41,9	9,0	31,6	37,1	30,4	7.6	11.8		39,7	17.5	21.1	25.5	7.8
, 7E, 7TM, 7TY	26	42.0	23,7	6,2	0.0	29.6	F 0	20.4	24.0									
		8.2	30,6	U,Z.	0,0	29,0	5,9	32,1	31,0	24,1	5,5	28,5	13.5	70.1	22.8	10,6	22.9	7.6

ANNEXE 1 (suite)

<u> </u>	Nb. de	г –					c	fours	ácala	aiaus	álóm	entaire	Q (2)					
Variables bio-physiques	rel.	AUR	CLB	DIE	DIR	ERF	ERP				RUI			SPS	TIC	VAA	VAM	VIL
Texture de l'horizon B	*							-				-						<u> </u>
Moyenne des relevés	1794	10,7	33.5	27,6	3.4	49.5	26,9	14,3	21,8	14,2	9,9	12,9	1.1	13,2	17,5	14,3	14.1	25,7
Fine	52	20,1	34.6	18,5	0,0	51,8			28,1	13,0	9,8	24,1	0,0	20,3	27.0	7.7	12,1	32,5
Moyenne	1222	9,8	32,6	27,3	3,2	49,4	28,6	12,6	20,7	11.7	9,5	13,0	1,3	10,9	17,8	13,1	12,6	26,8
Grossière	520	11.4	35,4	28,9	4,0	49,6	22,9	17,0	23,6	18,8	10,7	10,9	0,0	16,8	15,7	17,3	17,2	22,0
Texture de l'horizon C				,														
Moyenne des relevés	1211	14,1	34,4	27,9	3,5	50,9		16.0	23,7	14,7	10,6	14,4	1,3	16,0	19,1	13,4	14,4	26,3
Fine	56	26,9	31,5	20,0	0,0	51,6	15,5	28,8	28,8	18,7	7,8	22,1	0,0	27,3	27,4	8,7	10,1	30,1
Moyenne Grossière	344 811	15,9 11,8	33,3 35,0	29,0 27,9	2,8 3.8	52,1 50.2	26.0 24.1		24,6	10,6	11,1	15,8	0,0	15.4	19,6	13,0	13,1	27,0
Épaisseur de l'humus ou de l'			· · ·	21,5	3,0	50,2	24,1	15,6	22,9	15,8	10,6	13,1	1,6	15,2	18,2	13,8	15,1	25,7
Moyenne des relevés	2029	15.9	_	l nc E	27	140.5	25.0	10.2	22.4	15.2	100	140	125	22.4	10.3	1111	15.1	24.7
01 à 05cm	825	8.8	33,3	26,5 31,1	3,2 2,2	48,6 51,0	25,8 26,8	16.3 13.8	23,4 19,8	15,3 12,7	9,3	14,8	0.0	9,1	18,3 15,8	14.1	15,1	24,7 25,5
06 à 10cm	889	11.7	34,6	25,0	4,2	49.1	27.1	13.8	23.5	14.8	9,2	13,7	0,0	13,1	18.0	14.1	12,8	25,8
11 à 20cm	164	20.7	32,5	19,7	3.0	45.9	23,6	19.1	29,7	21,2	6,6	19,4	0.0	29.6	24.1	15,7	22,0	23,7
21 à 30cm	17	34.6	29,6	15,3	0,0	39.6	22,8		34.2	8.7	9.4	16,8	11.1	46.1	30.1	5,4	14.1	18,8
31 à 40cm	8	18,7	26,9	0,0	0,0	43,7	11,7	22,1	25,5	11,2	16,2	29,8	0.0	34,5	33.0	16.2	19.0	10.6
>= 41cm	126	43,1	23,6	6,2	0,0	29,4	5,9	32,0	31,5	24,1	3,7	28,2	13,5	69,5	22,7	10,0	22,4	7,6
Type d'humus																		
Moyenne des relevés	2033	15,9	33,3	26,5	3,2	48.5			23,4	15,3	9,4	14,8	3,5	22,5	18,3	14.1	15,1	24,6
AN (Anmoor)	8	28,5	28,5	14,6	0,0	49,6	24,2	27,6	34,8	7,9	0,0	22,4	0,0	9,4	38,9	0,0	0,0	24,2
MD (Moder)	988	7,4	30,5	22,9	4,3	50,7	29,4		17,8	8,8	10,8	12.9	0,0	7,2	17,6	11,4	8,9	29,4
MR (Mor) MU (Mull)	812 43	12,5 21,8	38,5	32,9	1,9	49,2	24,2	12,9	26,9	19,4	6,3	11,5	0,0	16,4	14,9	17.6	19,0	20,4
TO (Tourbe)	52	40.1	14,3 27.3	18,0 6,2	0,0	38,0 41,7		29,8	11,6 37,1	3,4	24,7	21,4	0,0	0,0	35,1	5,9	0,0	20,4
SO (Sol organique)	130	41.4	24.1	7,3	0,0	29,8	3,1 5,8	36.3 31.6	30.9	19.1	5,4	30,3 28,0	13,3	51,5 69,0	35,9 22,4	13,7 10,8	20,9 23,0	14,7 7,4
NA (Non appliquable)	14	0.0	10.4	26.7	0,0	38.5	7,6	26.9	0.0	24.1	36.8	0.0	0.0	0.0	10.7	27.9	18,5	0,0
Le pH de l'humus	*			,	<u> </u>		<u> </u>				, 55,5			, 0,0	,,,,	رعـ	.0,5	0,0
Moyenne des relevés	668	11.4	34,8	27.8	3,7	48.8	27.4	14.2	22,7	15,2	10,1	12,7	1,9	13,7	16.2	14.8	15,2	26,4
PH 3,5 (3,5 à 3,9)	44	8,0	44,7	41.8	0,0	49,0		13,8	27,4	9.1	0,0	14,6	0.0	21,6	15,9	21,6	19.5	24.0
PH 4,0	149	14,4	38,1	26,6	3,2	51,0	27,9	12,1	27,8	17,8	8,4	11,8	0,0	20,4	9,1	14,7	20.5	28,2
PH 4,1	44	4,0	31,4	23,2	0,0	35,2	27,9	11,5	24,2	20,7	5,B	6,9	0,0	11,5	13,6	19,4	16,9	25,1
PH 4,2	154	7,1	35,3	25,9	0,0	46,1	30,0	8,4	23,5	14,2	11,3	12,0	3,9	12,8	16,7	13,5	15,2	27,1
PH 4,3	139	9,1	33,5	24,3	0,0	49,9	26,5	15,4	18,6	13,4	8,1	11,0	0,0	5,8	14,6	13,1	9,9	25,6
PH 4,4	39	8,2	30,8	22,9	11,3	46,4	26,3	17,3	19,6	11,8	18,3	12,0	0,0	10,1	21,7	14,5	7,7	27,1
PH 4,5 PH 4,6 (4,6 à 4,9)	45 13	10,3 24,5	29,2 32,0	35,5 18,8	5,8	54,3 54,9	25,4	14,0	16,0	13,7	5,8	11,7	0,0	8,4	19,7	18,6	13,9	28,1
PH 5,0 (≥ 5,0)	41	20,9	23,7	31.9	0,0 4,9	52.1	21,7	15,9 27,3	18,8 12,5	6,2 18,2	10,7	14,4	0,0	0,0	15.4	6,2	0,0	20,4
Longueur de la pente arrière	17	20,5	20,1	31,3	4,5	JZ,1	25,1	27,5	12,3	10,2	0,01	25,4	0,0	0,0	27.7	6,4	7,5	22,3
Moyenne des relevés	2047	15,8	33.2	26,5	3.2	48.5	25,8	16,4	23,3	15,4	9,9	14,8	3,5	22,4	18,3	142	1E 1	24.6
D (0 à 50m)	1179	17,1	33.9	26.5	2.9	45.7	25.5	17.7	23,0	17.2	9,8	14.0	4.0	26,0	17.1	14,3 15,3	15,1 17.0	24,6 23,3
1 (50 à 100)	479	11,8	33,3	27,8	4,3	51.5	27.2	13.4	22,1	13,1	10.0	15,0	2,9	15,4	17.6	13.0	12.7	25,7
2 (100 à 200)	260	14,7	31,5	26,0	2,8	53,8	25,2	14,7	25,1	11,7	10,6	15.0	0,0	13,0	20.5	13,2	10.9	28,2
3 (> 200m)	129	18,8	28,8	21,9	0,0	50,6	23,8	17,3	26,3	11,6	8,8	19,5	4,4	24,1	25,2	10,8	12,5	22,8
Perturbation d'origine																		
Moyenne des relevés	2047	15,8	33,2	26,5	3,2	48,5	25,8		23,3	15,4	9,9	14,8	3,5	22,4	18,3	14,3	15,1	24,6
BR (Brûlis total)	554	13,6	38,0	38,5	3,7	49,1	24,1	15,8	23,0	19,1	3,0	11,3	3,0	16,4	16.4	20,8	18,2	19,0
CT (Counc totals)	200	82,5	0,0	0,0	0,0	22,4	0,0	49,0	26,5	0,0	0,0	43,5	0,0	95,9	26,5	0,0	0,0	0,0
CT (Coupe totale) ES (Épidémie grave)	280 10	18,1 21,9	29,4 36,2	26,8 25,3	2,8 0,0	45,3	21,0	21,3 0.0	22,7	18,1	17,0	18,3	0,0	23,6	22,1	11,5	15,1	21,7
FR (Friche)	22	19.2	36,∠ 25,9	25,3	0,0	59,2 25,5	0,0 4,8	37.1	27,0 19,9	20,3 22,5	27,2 20,1	7,1	0,0	19,5 0,0	0,0 22,5	18,2 32,1	24,5	8.4
NAT (Naturelle)	1174	16,0	31.7	18,1	3,1	49.2	27.9	14.4	23,6	12.1	8.5	15,3	4.1	24.6	18,1	9.9	10,9	0,0 27,7
P (Plantation)	6	0,0	9,1	23,1	0.0	45.5	11.6	34.2	23,6 0,0	25,8	44,7	9,1	0.0	0.0	10.0	0,0	0,0	0.0
Perturbation moyenne		- /-								,		لنت			.0,0	0,0	0,0	٠,٠
	936	15.5	35.7	26,3	1,6	51.8	25.5	15.2	24 7	16 3	99	15.7	25	21.5	18.0	13 R	15.5	24 R
CB (Coupe par bandes)	2	0,0	37.4	35.4	0,0	48,5	24,5		17,3	0,0	27.4	0,0	0,0	0,0	0,0	17.3	29,2	0,0
CE (Coupe partielle et épidémie)		11,6		34,4	0,0	59,3	18,3	11,5	26.3	15,9	9,7	14.7	0,0	18,7	12.3	14.1	21,2	23,8
CP (Coupe partielle)	383	11,7	31,8	21,1	2,3	50,3	29,6		20,4	12.5	11,6	15,6	3,1	13,8	18.7	11,7		27.8
DP (Dépérissement partiel)	2	0,0	0,0	0,0	0.0	33,2	53,9	15,8	0,0	0,0	0,0	0,0	0,0		21,2	0,0	0,0	30,8
EL (Épidémie légère)	379	18,6	39,8	30,1	1,2	53,8	21,4		29,7	18.0	9,0	16,9	0,0		17,6	15.4	18,5	22,2
CHP (Chablis partiel)	107	16,9	31,4	24,4	0,0	46,0	26,6	19,1	18,4	21,7	5,6	12,6	4,5	28,9	19,9	14,8	14,7	23,1
INP (Inondation partielle)	4	26,5	13,2	19,4	0,0	30,8	0,0	46,6	26,0	0,0	0,0	18,7	0,0	47,4	23,5	11,2	12,3	11,2
SUC (Acériculture)	1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Localisation par sous-région é																		
Moyenne des relevés	2047		33,2	26,5	3,2	48,5	25,8	16,4	23,3	15,4	9,9	14,8	3,5	22,4	18,3			24,6
3a-M	236	16,1	32,8	26,6	4,1	50,9	28,1	20,7	18,3	14,8	9,6	19,4	0,0	16,2	17,6	16,6		26,6
3a-S	497 474	18,7	40,5		0,0		23,6		30.7	16,4	10,6		4,9		17.2		21,2	
3b-M	326	15,4 12,7		25,7	1,8	55.4 36.5	26,2 30.2			13,2	8,6	11,7				11,7		27.1
3b-T			26,4	10,5	5.3	36,5	20,2	18,4		14,3		14,0	2,8	19,6		10,1		22.0
	<u> </u>	14,0	20,4	21,0	3,5	43,4	22,3	17,6	15,5	17,2	8,4	15,1	4,2	∠1,5	د,ں∠	11,4	10,4	25,4

Mai 1999 175


ANNEXE 1 (suite)

Physionomie et couvert (Type physionomique																		
	12047	145.5	1 22 5	Lac	1 5 5	1 40 -	T == -	1	1									
Moyenne des relevés FO (Forêt)	2047	15,8				48,5		16,4				14,8	3,5	22,4				
AB (arbustaie)		15,7				48,7						14,8	-	21,9			15,1	24,8
ND (Non déterminé)	12	24,9		<u>-</u>		43,2							11,0				18,4	11,
Type de couvert (Forêt et arbust		6,5	11,2	31,4	0,0	19,2	0,0	49,2	6,5	23,5	22,9	12,6	0,0	28,0	17,8	24,7	9,1	0,0
		T	T	T			-,		.,									
Moyenne des relevés F (Feuillu)	2035	15,9				48,6		16,0	23,4			14,8	3,5	22,4		14,2	15,1	24,0
	955	11,4		<u> </u>	+	49,3		14,6	17,6	7,1	12,0	13,8	0,0	7,9	20,2	10,3	7,9	28,
MF (Métangés à dominance feuillu)	489	16,4	-		_	55,8	25,5	15,3	26,7	12,6	8,1	17,5	0,0	16,7	18,2	13,5	12,7	25,
MR (Mélangés à domi. résineuse) R (Résineux)	334	18,1			2.1	45,8	21,1	15,1	28,3		6,7	14,1	4.4	26,1	16,1	17,0	20,8	19,
	257	24,1	34,1	25,4	0,0	31,7	11,4	21,9	27,8	30,0	5,3	13,0	8,5	48,1	13,0	21,7	26,7	11,2
Classe de densité de couver		_	_															
Moyenne des relevés	2035	15,9			3,2	48,6	25,8	16,0	23,4	15,3	9,7	14,8	3,5	22,4	18,3	14,2	15,1	24.8
A (> 80%)	890	13,4	31,4	25,0	2.5	49,2	30,1	12,3	19,8	10,8	7,9	13.3	1.7	15.0	17.7	12.5	10.7	27.0
B (61% à 80%)	686	16,4	34,7	25,1	3,7	48,6	24,9	16,5	24,7	15,8	8,7	15,3	1,5	23,7	18,8	13.9	15.2	24.1
C (41% à 60%)	413	18,9	35,4	31,2	1,6	48,5		19,7	27,9	20,5	12,7	16,7	6,5	30,0	18,6	17.4	20.8	
D (25% à 40%)	46	21,3			10,4	37,8	9,6	28,4	22,0	25,7	20,0	15,0	8,9	36,5	19,2	16,2	23.5	
Espèce dominante du type fo				er 4 mèt	res)													
Moyenne des reevés	2047	15,8		26,5	3,2	48,5	25,8	16,4	23,3	15,4	9,9	14,8	3.5	22,4	18.3	14.3	15,1	24.6
AUR	13	70,5	26,9	16,4	0,0	34,9	0,0	46,7	38,3	6,2	24,3	23,2	0.0	45,7	19,6	6.2	16.4	6.2
BOJ	209	11,2	34,8	14,2	0,0	59,2	25,6	12,5	30,0	10,8	11,0	22.9	0.0	13.0	24.6	5.8	8.7	33.1
BOP	220	16,2	39,1	43,7	4,8	55,9	19,5	16,2	28,6	12,2	7.7	11,7	0.0	16.8	19.7	19,3	17.0	16.8
CET	3	0,0	24,5	23,8	0,0	42,8	30,6	19,2	25,2	0,0	23,1	12,9	0.0	0.0	15.3	0.0	0.0	12.9
CHR	51	8,9	37,9	26,0	0,0	42,2	37,1	16,0	14,4	8,0	0,0	5,8	0,0	11,7	5.4	19.4	12.5	20.0
EPB	33	15,4	34,7	28,0	0,0	53,6	18,3	17,1	26,6	19,9	0,0	16,3	0,0	21,5	19,9	7,8	19.5	20.1
EPN EPR	91	29,7	37,7	30,8	0,0	19,9	5,4	23,7	32,9	27,7	5,9	6,1	13,5	61,0	7,5	23,6	37,7	5,9
ERA	33	19,3	41,6	38,3	0,0	30,4	9,1	19,8	23,7	37,3	11,0	4,6	0,0	38,5	4,6	34,4	32,1	7,8
ERE	3	42,4	0,0	0,0	0,0	0,0	0,0	12,9	0,0	0,0	0,0	24,5	0,0	0,0	14,1	0,0	0,0	0,0
ERP	27	11,4	37,3	17,0	0,0	85,1	21,1	12,2	32,0	11,6	23,6	25,0	0,0	0,0	28,6	6,1	0,0	23,6
ERR	15	5,8	24,2	6,3	0,0	48,3	63,6	8,2	0,0	8,9	21,6	6,8	0,0	0,0	24,5	5,8	10,0	31,4
ERS	156	12,1	39,1	29,6	0.0	55,9	27,5	13,1	24,6	10,7	11,3	9,7	0,0	9,8	13,7	15,1	12,1	25,9
FRA	536	3,5	23,6	12,8	4,4	45,4	31,6	10,0	8,9	4,4	8,8	11,1	0,0	1,0	17,9	4,4	2,1	31,4
FRN	26	37.1	24,5	0,0	0,0	64,0	64,8	0,0	0,0	0,0	0,0	22,4	0,0	0,0	0,0	0,0	0,0	26,5
HEG	68	5.3	26,8 21.0	6,2	0,0	59,9	5,2	31,6	35,7	18,2	0,0	51,9	0,0	35,1	42,0	0,0	0,0	19,1
MEL	4	0.0	27.8	7,1	0,0	29,0	40,0	9,0	8,0	0,0	0,0	6,2	0,0	0,0	11,8	8,0	0,0	30,2
OSV	4	0.0	18.0	11.2	0,0	0,0 58.7	0,0	33,9	14,1	12,3	0,0	0,0	37,8	79,4	12,3	19,4	29,6	0,0
PEB	1	48.0	0.0	0.0	0.0	0.0	15,0 0.0	43.6 87.2	0,0	0.0	52,0	11,2	0,0	0,0	24,5	0,0	0,0	30,8
PEG	32	0.0	36.0	46.1	11.7	52.1	24.9	10,3	10,6	22,4 11,2	0,0	24,5	0,0	0,0	45,8	0,0	0,0	0,0
PET	73	16.0	38.9	48.3	0,0	55,5	16.6	24.2	23,7	12.5	14,8	4,0	0,0	0,0	12,1	17,2	8,8	16,5
PIB	81	5.9	45.2	42.8	0.0	46.6	18.8	15.7	22.6	16,6	12,0 4,3	11,9	0,0	10,1	20.5	16,4	15,3	15,7
PIG	13	0.0	45.2	35,1	0.0	9,6	6,2	28.3	21,5	61.5	0.0	7,9 0.0	5,3	10,8 29,5	5,1	24,6	22,6	10,7
PIR	12	0,0	40,4	34.9	0.0	27.7	14.1	6.5	18,9	17,8	0,0	0.0	0.0	6.5	0,0	53,0 26.0	46,2 23.6	0,0
PRP	8	17,3	32,8	27.8	0.0	54.4	17.7	13.7	20.3	11.2	36.6	11.2	0.0	0,0	26.5	7.9		0,0
PRU	62	10,6	25,9	5,8	4.9	43.4	35.0	4.0	21.5	18.4	0.0	9.3	0.0	19.2	11.6	8.4	0.0	21,2 29.3
SAB	141	19,8	35,9	24,1	0.0	42.8	17.6	18.4	29.3	19.4	5.7	14.1	0.0	29,2	16,2	11.6	18.6	18.6
SAL	2	33,9	15,8	29.2	0,0	38.1	0.0	53.4	20,0	67.1	0.0	32,4	0.0	0,0	30.8	0.0	0.0	15.8
SOA	1	41,2	45,B	0,0	0,0	26.5	0,0	45.8	56.6	0.0	0.0	22.4	0.0	97.5	0.0	38.7	48.0	0.0
НО	112	28,4	31,6	11,1	0,0	43.3	11.3	18.7	31.7	25,3	8.9	22.2	2.1	45.3	22,3	8.4	14,5	13.4
IL	4	0,0	24,5	0,0	0,0	56.1	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26.0	0.0	0.0	13,4
ID .	12	6.5	11.2	31.4	0.0	19.2	0.0	49.2	6.5	23,5	22,9	12,6	0.0	28.0	17,8	24.7	9.1	0.0

⁽¹⁾ Les données sont exprimées avec l'indice FA [Indice fréquence/abondance = (fréquence relative X couvert moyen) 1/2]. Lorsque la valeur de l'indice FA de la classe à l'étude est une fois et demie ou deux fois supérieure à la valeur moyenne de l'indice FA de toutes les classes confondues, la classe à l'étude est considérée comme significative ou très significative.

⁽²⁾ Données provenant des relevés où le groupe écologique est présent avec un couvert d'au moins 10%.

CLÉ D'IDENTIFICATION DES RÉGIMES HYDRIQUES À PARTIR DES CLASSES

															***********				Gre	oupe	d'esp	èces	indic	atric	••																	\neg
Variables bio-physiques	Nb. de rel.		AUR	AUR RUP SPS	AUR SPS		DIE PLS		ERE Cl.B	ERE DIE	ERE DIE TIC	ERE ERP			ERE E		RE I	ERE	TIC	ERE TIC RUP	ERE		VIL.		ERP F	PLS RI			SPS	TIC	TIC T		IC VA		A VAA				VAM OXM		VAM V	/IL
Drainage																																-			1	1		1	1			_
OO (Excessif)	5		\neg			1,9									0.7	\neg		_				$\neg \neg$	\neg	0,7	_		\top	1	T			_	9	1	_	7.7		1	ТТ			\neg
10 (Rapide)	70	-	_			3.7	2,5	4.4	6.5	4.8		2,6	4,0		0.7	11	1,8			1,7	22			5,0		4	8	1	†		-	_	27		2 50,0		27,3	4.0	1	12.5	7.7	
11 (Rapide avec seepage)	1		_			-										+	-	\neg			-,-			0.7	_	7	-	+	 -			_	+	-1.5		1,7,3	1	17,0	1 1	12,2		
16 (Complexe)	8				2.3	3,7						0.6					_						$\neg \dagger$		_			 	 	\vdash		7	7	2.8	:	+	91	+	1 1			\neg
20 (Bon)	807					42.6	35.0	45.6	43.6	48.6	45.0	53.2	36.0	84.6	19,6 3	B 1 2	3.5	33,3		10,3	32.3	17,7	19,4	55 4 5	51 312	20,0 33	13	-	t —	429	30,0 4	4 2	1 63		4 50,0	30,8		68,0	95	12,5	15,4 4	6,6
21 (Bon avec seepage)	16					1.9		0.4	- 1	1.0		1.4				1			8.3				3,2	2,2	-,-		-		1			-		- 150	30,0	100,0	91	150,0	1 "			17
30 (Modéré)	731	50,0	8,0		9,3	24.1	55,0	40,2	35,5	42.9	50.0	30,2	38.0		45.7 4	7.6 3	5,3	33,3	33,3	22.4	57.0	64.7			41.0	20,0 28	6 7.1	1	1	42.9	30,08	7 3	1.8	15	в	23,1		20.0	61.9	62,5		6.2
31 (Modéré avec seepage)	36					1.9		0.4	3.2	1.0			6.0		0.7	1		8.3		3,5			11,3	2.2	2.6		-	 	†			4 7			1	7.7	+	120,0	10.,0	02,5		5,2
40 (Imparfait)	169	7,1	12.0	14,3	16,3	16.7	7.5	6.9	0.1	1.9	5,0	20	12.0	7.7	18.8	.5			25.0	29,3						30.0 19	1 7,1	1	20.0	14.3	10,0 13	0 7	7	\top	1	7.7	 	80	19,1	12,5	77	5.2
41 (Imparfait avec seepage)	19							0,7							5,8	11	1,8		8.3	5,2			1,6				1	1	T			.4		_		1	1	1	1	,-		1.7
50 (Mauvais)	46	14.3	4,0	28.6	4.7	3.7		1,1	3,2				2,0	7.7		8 5	9	\neg	8,3	8,8	\neg		4,8				7.1	18,2	20,0		20.0 21	1.7 7	.7		1	1	9,1	1	9,5			1,7
51 (Mauvais avec seepage)	9														0.7		T			6,9	1,1		1,6						1		10,0 4	4		_	1-	 	1	T	1			1
60 (Très mauvais)	126	20.6	76,O	42.9	65,1			0,4				0,3	2,0		5,1	1	1,8		8,3	12,1				0,7	13	30,0 14	3 78,6	81,8	60,0		39	9,1 1	5.4	Τ.	1	7.7	9,1	1			53.9	1.7
61 (Très mauvais avec seepage)	4			14.3	2,3												T		8,3				1,6					1	T			\neg				1		1				
Situation sur la ponte						_	_																					-				\neg			-		-	-				\neg
O (Terrain plat)	224	21,4	64.0	100.0	41.9	5.6	15.0	4.4	6.5	7.6		1.7		15.4	16,7 1	4,3 5	9		83	24,1	54	17.7	9.7	T	26	50 0 23	8 71,4	63.6	40.0	14 3	10,0 39	1 7	7	13.	2	46,2	91	132 D	28.6	125	53,9	55
2 (Escarpement)	13	****			****	1	1	26	1,6	10		0.3			1.5	-19			-5,5-			****		0,7	- 1			100,0	1-0,0	1775	10,013.	44		2,6		7.7	+-··	+32,0	1.0,01			·-
3 (Sommet arrondi)	186		_	-	2,3	25.9			12.9	7.6	10,0		4.0	23,1	3,6	.8		_			10.8	-	-	12,2	23.1	9	5	1	 	14,3	-	+,	.7 27		1 50,0		18.2	20,0	9,5	37,5		3,5
4 (Haut de pente)	353	7.1								21 0	15.0	29.9	24.0	30.8	5,8 1	4.3 5	9	16,7				11.8		28.8		9.	В	†	1	,5	10.0	-+'	9	1 23	71 ,0	15.4	7 27 3	155	14.3		77	3.8
5 (Mi-pente)		14,3	40								65,0			23.1	36,2 3	R 1 6	7 1		41.7	32,8						30,0 28		1	20.0	429	40.0 17	7 A A			0 50.0					25,0		5,2
6 (Repiat)		7.1							3.2			20			94		-+-		83		6.5				5.1	4.		_	100,00		20.0		7 9		100,0	+	12.,0	4.0				3,5
7 (Bas de pente)		28.6	40								10,0			77	23,9 2		77 7			25,9						10,0 23		18,2	20.0		10,0 21		4 9		1	7.7	9,1			12,5	7.7	5,5
8 (Dépression ouverte)	62		8,0		18.6	19	25	1.1	1,6	19		17	8,0		2.2	5			16,7	10,3	221	-1-	8.1	14		10.0	7,1	91	20.0		10.0 13	30 7	7	2,6		+	+	1.0	1200			3,5
9 (Dépression fermée)		14.3			11.6		2.5								22	1	-			17					2.6		8 7.1		1	\vdash	8	7 7	7	+-"	1	+	9.1	+	++			~~
Versant												_													-,-,			1 -1				—	-				1 5	-				\dashv
B (Bas versant)	746	42.0	220	100.0	53.5	33.3	30.0	42.7	41 0	41 D	45 N	20.1	16.0	39.5	50 4 5	2 4 6	7 T	11 7 T	41.7	70.7	44 1	47 1	436	12.2	7 7 16	50.0152	4 21,4	81.8	I GO O	42.0	40,0 69	26 2	110	1 110	4	1520	0.1	Tec o	Teral	COE	69,2 1	7.3
M (Moyen versant)		50,0													39 1 3												6 78.6			57 1	50.0 17	7 4 4	3 45	E CO	5 50 0	30,5	636	130,0	30 1	37 E	(23.1 (26
H (Haut versant)		7.1			40,5	1 0	22.5	117	76	12.4	10.0	중취	28,0	01,3	1.5	15	,,,,	83	30,5	1.7	끍습	32,3	113	36 0	110	19	1 70,0	10,2	140,0	3/1	10,013	30 3	9 45	5 21	1 50.0	77	27.2	120	30,1	J, 5	7.7	3,0
Classe de pente	330	بننا	7.0			1.5	22,2	****	4,0	-2.	10,01	23,01	20,0			-	_	0.2		بنن	10,01		11,3	30,01	1,01	113			+		10,011		0,0 [43	3 141.	1130,0	1 '-	21,3	112,0	1		للئك	9,0
	303	26.7	ດລຸດ	100.0	70.1	1120	12.6	a a I			-	col	10.0	20.0	20.012	2011	0	-	or o I	21.01	czi	22 f I	9.7	7 0 I	7 7 13	zo ol so	21 02 0	1010	loo n	20 C	moler			143	31	T 46 3	1.00	1 70 0	155.61	35.61	C	-
A (0 & 3%)		35,7	4.0	100,0											290 2					31,0						(0,0133	3 92,9	101,0	100,0	20,0	30,0 69	415	2.4	13		46,2	18,2		23,8			8,6
B (4 à 8%) C (9 à 15%)		28.6 14.3	4,0		116		20,0				25,0 45,0		22,0	44	29 0 1 23 2 3	2 2 2	3.4	25,0		31,0 19,0				13,7		19 20,0 28		18,2	20,0		30,0 8 30,0 21				5 50,0		1 37 3		57.1			9.0
		14,3	40												15.9 2					15,5								+	 	20,0					8 50,0						15.4	
D (16% à 30%)		7.1	4.0	\vdash	43						10,0						9	22,21							33,3		3 7,1	 	ļ	14.3		.4 4	3,1 36			7,7		16,0	+		7.7	
E (31 à 40%) F (> 41%)	76										10,0						9	-+		1.7	3,4		3,2	10 B		10,0	۰+	+	+	14,3	10,01			1 5.		1	27,3	+	11	12,5	7,7	
	/0					1,3	2,5	3,1	4,0	1,3	10,01	4,0	4,0	′.′	0,/	-1-3	,3	_	В,3	'.'				10,01		וט,טו				14,3		-	121	3 2,6	1	15,4	9,1	4	4,8			1,7
Altitude												-				- -	_	-							-		- 1		,	_		-			-				,			
100 à 199m	16	1 1	8,0			1,9		0,4			1				1,5	- 15	9			5,2		11,8				4.		 	l		10,0 4			_		1	↓		-			1,7
200 à 299m		14,3													39,1 4				16,7	62,1	31,2	11,8	48,4	28,1	20,510	50,0 47	6 50 0	90,9			30,0 65					76,9						29,3
300 à 399m		78,6	16,0	20.6	50,1		52,5	48,9	50,0	44,B	30,0	설립	62,0	53,9	57,3 5											40,0147	6 42,9	9,1	80,0		40,0 30			5 65	8 100,0	23,1	90,9			50,0	53,9 5	
400 à 499m	110	7,1		-	<u> </u>	5,6			3,2	יייי		<u> /</u> <u> </u>	14,0		1,5	rat_	\rightarrow	6.3	8,3	1,7	b,5	1///		10,8	으비.		7,1	↓	-	14,3	20,0	-17	7		1	↓	↓	4,0				15,5
500 à 599m	4	-	_	_	-	-		0.4					2,0		122	-	-+	\rightarrow					1,6			\rightarrow	\rightarrow	 	-		—	-4-		4_	₩	 		-	\perp			1,7
600 å 699m					ļ	-		0,4		-					0,7			-			111	\rightarrow			-+				1				_	-	-		—		1			
(> 700m)	╙	щ		ldot	Ь	Щ.	لــــــــــــــــــــــــــــــــــــــ	ш	\Box	Щ,					LL		L	_			_		1,6							L		-										
Dépôt de surface						,											_				;																					
1A, 1AY, 1AM, 8C		50,0	8,0	28,6		63,0					70,0				64,5 7	5,2 70	1,6	00,0	66,7	63,8		76,5			39,7	30 0 42	9 21,4	9,1	20,0	57,1	60,0 39		5 45	5 36.	8 50,0	23,1		32,0	57,1	62,5	15,4 7	9.3
1AD, 1AB, 8E		7.1		\square	2,3	1			1,6		5,0				2,9		_			8,6	1,1			0,7				ــــــ	20,0		4	4			1	1	9,1					
18, 18F, 18I, 18P, 18T	10			Щ.	<u> </u>	١.,		11		1,0		0,3		7,7	0,7		4						1,6	_	\perp	_		1	1				9,		1	1_			4,8]	\Box	
2A, 2AE, 2AK, 2AT	40			\sqcup			2,5			1,9		2,3			3.6		_+			1,7	3,2					9,		1			10,0 4			2,6		1		12,0]		1,7
28, 2BE	127		4,0		4,7	1.9	12,5	5,5			5,0	121			14,5	5 5	9			3,5			9,7	1,4	2,6	30,0 14	,3	18,2			В	71	9,	1 21,	1	23,1	9,1	32,0	4.8	12,5	7,7	3,5
3A, 3AE, 3AN	9		8,0	اجيرا	<u> </u>	₩	├	ابدا		1,0		_		7,7	0.7	-	-			1,7	_	5,9					┵—	↓	ļ	Щ.				4	1	1	_		↓ . I			
4A, 4GA, 4GAY, 5A	14		4.0	14,3		1		0,4								1,8		_		5,2			1,6	_	_	4,		-	_	14,3	θ	7			1	7,7		1	11			
4GS, 4GSM, 4P, 5S	26		8,0	اجيا	9,3	37	├	0,7		\vdash	5,0		2,0		3,6					1,7						4		+	L						1	7,7	l	1	14,3		7,7]
7E, 7T, 7TM, 7TY	126	20.6	68,0	57,1	65,1	1000		0.4		ايرا			2,0	33 :	5,1	-11	1,8		16,7	12,1			1.5	무기	- 3	JU 0114	3 78,6	72,7	160'0		10,0 34		5.4		1	7.7	9,1		1_1		53,9	1,7
R, R1A, R7T, M1A,M4GA, M7T	284	14,3		لــــا	4,7	159,6	12,5	15,0	24,2	5,7	15,0	16,1	IU,D	23,1	3,6	,5 1	1,8		8,3	1,7	3,2	5,9	6,5	28,8	7,7 [1	10,0 9,	5]			28,6		2	3,1 36	4] 39	5 50,0	130,8	63,6	24,0	19,1	25,0	15,4	.3,8
Texture de l'herizon B																																										
NO (Non observé)	253	50,0	80,0	57,1					3,2	1,9	15,0				15,2 1			_		25,9	\perp I					10,0 19	1 78,6	72,7	0,00			3,5 3	0.8 27	3 5,3		15,4	54,6		14,3	25,0	69,2	1,7
Fine	52		4		2.3		2,5			\sqcup		0,6			4,4			[13,8				2,2			8 7,1				10,0	\perp			\perp	T		T	T		15,4 7	5,2
Moyenne	1222			14,3											45,7 4					46,6						10.0 38		18,2	20,0		80,0 43					7,7			47.6	50,0	15,4	9,3
Grossière	520	14,3		29,6	14,0	25,9	40,0	31,4	38,7	30,5	40,0	21.0	20 _, 0	53,9	34.8 2	8,6 1	8	33,3	33,3	13,8	22,6	23,5	25,8	17,3	15,4 5	50,0 38	1 14,3	9,1		14,3	13	0 2	3,1 36	4 36,	8 100,0	76,9	18,2	32,0	38,1	25,0	15,4 1	3,8
Texture de l'horizon C																																T									Market Market	I make to
NO (Non abservé)	836	50,0	72,0	71,4	69,8	46,3	37,5	39,4	35.5	28,6	25,0	47,1	36.0	61,5	28,3 2	8,6 4	1,2	8,3	41,7	32,8	20,4	23,5 T	35,5	51,8	30,5 5	50,0 33	,3 85,7	72,7	60,D	57.1	30,0 34	.8 6	5 54	6 55	3 50 n	38.5	54.6	136 n	33 31	50.0	76 9T	34,5
Fine	56		4,0	28,6	2,3			1,8	1,6	1,0	5,0	1,2	2,0		6.5	1,8 5	9			5,2	3,2	11,8	11,3	0,7	1	10,0 4,	8 7,1	1	T		10,0 17	.4				1 "	1	1	1		والمعتب	3,5
Moyanna	869	 35,7 	16,0		14.0	150,0	30,0 <u> </u>	47 B	53,2	37,1	55,0	47,11	38,0	61,5	49,3 2	3,8 4	,2 6	0,0	41,7	39,7	46,2	29,4	54,8	50,4	18,7	0,0 42	9 14,3	T	20,0		30,0 30		.4 54	6 42	1 50.0	38.5	27.3	44.0	29.6	50.0		55,2
Grossière	164	7,1		14,3	9,3	11,1	2,5	4,4	9,7	1,9	5,0	7,8	6,0		10,9					25,9							5 7.1				10,0 17			5.3					42,9			5.2
													_				-											_		ننب								4		10	المنشت	

ANNEXE 3 (suite)

																			Grou	e d'e	spèc	s Ind	licatr	ices									-										
			14	WR	т	-т	Т	-1	\neg	П	RE	-11	ERE	Т	T	Т	T	ER	EE			ERE		T								T]				
Variables bio-physiques	Nb. de			RUP /	AUR C		DIE		RE CLB	RE	DIE E				ERE E						E VIL	VIL TIC		PERP	PLS	RUI	SPS	SPS GRS			TIC TI				AA V						PLS	VAM SPS	VIL
10.01	rel.	- +	(UP) S	PS :		1.9	23	; ; `	LE	<u> </u>		3	110	,,,,	19		" "	7			1	-					7.1				0,0				5,3		7,7						
NO (Non observé)	826	14,3 1	201	43		33 3 le	57 5 d	603	39 6	51.0	0,0 4		52.0	38,5	33,3 57	1 47	1 50	0 25			3 64.7									28.6	0,0 13	0 46	2 45	5 4	1.4 5	0.0		36,4			12,5		36,2
06 à 10cm		35.7		٠,٠	40	50 0	30.01	17 B 5	3.2	37.1	50 4	7,1	38,0	51,5	49,3 23	8 41	,2 50	0 41			2 29,						14,3				0,0 30										37,5	23.1	5,2
11 à 20cm		7.1	1	14,3						19	5.0	7.8	0,0		10,9	_					5 5,9	11,				9,5			20,0	14,3	10,0 17			_ 15	5,3		23,1	18,2	8'0	42,9	3/,5		1.7
21 à 30cm	17			14,3				0.4	1,6			0,3			1,5				3 3				0,7	2,6	1_			18,2		_	_+-	7	7 _	-1-		-+							24
31 à 40cm	8		4.0	-		1.9			1,6							5,			3 1			1		4_	ļ.,						4,			-	-+-	-	7,7	9.1		+		53,9	17
>= 41cm	126	42.9	8.0	57,1	66,1		_	0,4				0,3	2,0		5,1	5,	9	16	7 12	2.1		1,6	0,7	1	30,0	14,3	71.4	/2,/	MU I		10,D 34	,8 15	.4	_			/./	9,1				33,5	
Type d'humus							-																									+					1	<u> </u>	_				
NO (Non observé)	14		_	Т		1,9	\neg	0,7		Т		Т			19	1,1			\Box					1_	10,0	4.8						-	_	-15	5,3	_	7,7	9,1					
AN (Anmoor)	8	1	_					0.4	3,2					7,7				В	3			1,6	<u> </u>			-					0,0	+	- 1	- 1-	= 17		77.1	9,1	34.0	143	12.5	77	65.5
MD (Moder)	999	14,3	80	_		18.5	17 5	56 0	29 n T	41.9	45,0 E	4,7	62,0	38,5	31,9 5	4 41	,2 66	7 33	,3 32	2,8 77	4 52	9 66,	1 59,	7 84,6	10,0	47.6				57.1	0,0	7 5	9 1	3,2 3	0,8	Wu L		72.7			75.0		25,9
MR (Mor)	812	42,9	40	14.3	25.6	72.2	82.5	39,4 (62,9	58,1	500	34,2	32,0	53,9	58,7 19	1,1 41	,2 33	3 33	3 3	,0 22	6 47	1 22,	6 38,	1 15,4	150,0	23,8	14,3	9,1	20.0	28,6	30 U 4	4 /	44	://5	1.9	יינוג	69,2	121	78,0	10,2	75,0		6.9
MU (Mull)	43		12.0					1,8	3,2		5,0	0,9	2,0	1	1,5 9	51_		i_	3				1,4	4_	₩.	9.5	+				10,0 21				-+-	\rightarrow	-		-	9.5	12,5	1	_0,_
TO (Tourbe)	52			28,6	9,3	5,6		0,4				\Box	\Box		2,2	5			3 20			4,8		_	1	1					10,0 30 10,0 3		4	-+	-+	+	7.7	9,1		9,3		53,9	17
SO (Sol organique)		28,6	68,0	57,1	65,1	1,9		0,4	1,6			0,3	2,0		5,8	11	,8	16	,7 1:	2,1		1,6	0,7	1	30,0	14,3	78,6	72,7	ար		t Jujur	5 1t	.4]		_			3,1				133,3	
Le pH de l'humus																																-		1 -	- T D	00.01	00.0	70 7	ec c	61.01	37 £	176 o l	60.0
NO (Non observé)	1 1379	78.6	en ni	P5 7	837	57.4	65.0	66.4	69.4	62.9	90.0	52,9	64,0	69,2	69,68	0 64	1.7 66					8 64,	5 64	B 56,	4 70,0	42,9	100,0	100,0	80.0	85,7	70,0 95	5,7 7	9 6.	3,6 5	<u>/ 9 1</u>	10,00	92,3	12,1	56,0	9.5	37,5	77	5,2
PH 3.5 (3.5 à 3.9)	44	71						2,6	1,6	5,7		2,3	4,0		2,2			В	3 1	7 1				2,6		L_	\rightarrow		<u> </u>			. 7			7,9			27,3	120		37.5	144	5,2
PH 4.0	140	14,3	40	143	7.0	14.8	10.0	7.3	8,1	7,6		7,5	6,0	7,7	10,9	11	1,8			11	8 11,	8 4,8	8,8	5 5,1	1	4,8	-			\rightarrow		- 17		1				21,3	12,0	4.8	31,3	7.7	6.9
PH 4.1	44					5,6		0.4	3,2	1,0		3,2	4,0		1,5 4										10,0	1							4-		7,9				20.0		12,5		5,2
PH 4.2	154			一十	2.3		10,0	5,8	12,9	5,7		B,9	10,0	7,7	B,7		,9		7 5	,2 4	3 17	7 3,2	2 10,	8 15,	4	9,5	-		20,0					3.2			7.7		8.0	4.0	12.5		1.7
PH 4,3	139		4.0		2.3	3.7	10,0	9,9	4,8	8,6		8,9			3,6 9						6 11,				10,0	23,8	-		-	14,3	-	-		1	4.6 +				0,0		12,5	+	1.7
PH 4.4	3				2,3	3,7	2,5	0,7		1,9		2,0			0,7	5	9 8			,7 4			8 2,9		+-	9.5			\vdash		20,0 10.0	٠,	7 1 3		7.9	-			4.0	-		+	17
PH 4.5	45				2.3			2,2		2,9	5,0		2,0	7,7	1,5		1.8	,3	:	3,5 2	21		2 0,7	1 5,1	4	4.8					10,0	-+-	4		/.2				1,0			+	~~
PH 4.6 (4.6 à 4.9)	1							2,9				0,3			1,5			_				1.6		: -	1.00	1.0			-		-+-	4		+	-+	-			-	-		_	3,5
PH 5.0 (>= 5.0)	4		12,0				2,5	1,8		3,8	5,0	1,4	4,0	7,7	- 14	,8		,3 Γ		3,6		3,	2 11,4	4 2 6	10,0	4,8					<u> </u>	-			_								k
Longueur de la pente arrière																						- 1	- 1			1	00.01	20.0	100.0	12.0	30,0 8	2 6 7	2017	271	72.7	E0 0	016	536	76 D	71.4	75 D	92,3	55.2
O (0 à 50m)		64.3	80,0	85,7	81,4	70,4	57,5	54,D	75,8	50,5	55,0				47,B 6		1,2 4				5 64						92,9	90,9	100,0		10,0 8			11	15,8	0,00	7.7	27,3	20,0	143	25.0		22.4
1 (50 à 100)	479	7.1	16,0		9,3	16,7	22,5	25,6	9,7	33,3	15,0	27,3	24,0							4,1 26		B 32	3 20	B ZU	5 10,0	119,1	-	9,1		28.6		44	2.4	8,2	5.3	30,0	77	91	20,0	14 _. 3 9.5	12,0	1.5	19.0
2 (100 à 200)	26	28,5	4,0		2,3	9,3	15,0	12,8	11,3	13,3	15,0	13,2	22,0		16,7			,7 50					7 9.		10,0	14,3	7.1				10 0 8	7 7			5.3			٠,١	4.0			+	3.5
3 (> 200m)	12	9		14,3	7,0	3,7	50	7,7	3,2	2,9	15,0	4,3	8,0		10,9		18 2	8 10,6	3 1	7,2 5	4	19,	/ 5,	9 5,	110,0	9.5	741		_		10,010	····	4		3,3				4,0	1.0			- 1-
Perturbation d'origine																						-	1122	-1		1			,	_	20.0 1	7.4	1.5	4 6 1	co al	100 D	C1 C	27.2	icc n	114 2	37.5	23,1	20.7
BR (Brúlis total)	55	4 35,7	4.0		27,9	38.9	65,0	21,2	35,5	60,0	80,0	22,7	22,0	38,5	26,1	8 2	3,5 5	0,0 50	0,0 1	9,0 1	.1 17	7 16	,1 26	<u>,6 7,7</u>	30,0	23,8	├		-		2001	<u> </u>	-13	4,0	30,4	100,0	61,5	21,3	130,0	14.3	37,3	123,1	20,7
CHT(Chablis total)	1	1	4.0																				_	-1		122.0	20.0	22.2			40 0 3	0 1 2	0 5 1	9,1	2.6		15.4		120.0	143	12.5	15,4	10
CT (Coupe totale)	29	14,3	8,0	14,3	16,3	18,5	20,0	13,9	12,9	13,3	5,0	8,1	8,0	30,8	11,5 4		3,5 6	,3 6	1,3 2	2,4 1	2.9	112	9 110	.1120	5 10,0	23,6	29,6	21,3	20,0		40,0 3	2,112	0,5		2,6		13,4		8.0		10,5	10.5	100,0
ES (Épidémie grave)	1	0				3,7		0,4	1,6					_	1,5	<u> </u>			-			-			100	14.3				-	10.0 4				5,3		77		1.70	48	· -	_	_
FR (Friche)	2	2	8,0			5,6	2,5	0.4						7,7	0,7	= =		٠+٠	٠, ١,	- -	100	4 74	0 63	3 71			71,4	727	80.0	100.0	30,0 3							72.7	16.0		50.0	61,5	69.0
NAT (Naturelle)	117	4 50,0	76.0	65,7	55,8	33,3	12,5	64,2	50,0	26,7	15,0	69,3	70,0	23,1	60,1		2,9 4	1/14	1,7 5	0.5 1/.	2,01 82	40	<u>,u 03</u>	11/1	الحام	9.5	1115	161	100,0	1.00,0	20,013	×' "							1:5,0	T	1	T-'	1
P (Plantation)		6					L.	ш		لــــا		اا			!	4,3			_		_					13,3						-+-							-			-	
Perturbation moyenne																1 -		1 -		× 3 1 -		0 6.	016-	cle	21207	ale i o	71 /	ELE	l en e	57 1	80,06	96 6	92 2	2 7 I	52 E	100.0	46.2	63.6	148 n	47 F	25 n	53 9	62
Sans perturbation	111	1 35,7	72,0	42.9	60,5	44,4	67,5	51,5	61,3	54,3	65.0	56,3	54,0	46,2	40,6	7,115	8.8 5	5,3 5	U,U 3	0,2 4	1158	0 54	0 2/	10 0	الحاد	101,9	11.4	34,0	100,0	1, 10	30,00	2010	7.41		22,0	.50,0	70,2	33,0	1-0,0	1	1-2,0	155,5	1
CB (Coupe par bandes)		2					1	l i		1_1			L	7,7	1 1	1,8 [-+				3,			+-	+	 			-			-+		2.6		t	9,1	8,0	9.5	t	1	3,5
CE (Coupe partielle et épidémie) 5	8			2,3	3,7	25	4,0	3,2	4,8		1,4	1.5	17	4.4	, b 5	5,9			3,5 7	급	7 10	쉬송	2 22	1300	101	14,3	18 7	 	28.6	20.0	44	31	911			30.8		24,0		†	†	24
CP (Coupe partielle)	38	3	4,0		9,3	111,1	2,5	20,1	12,9	10,5	15,0	24,1	34,0	23,1	20,3	9,11 1	// 4	1/ 1	٠/ ١/١	1,212	'라 !/	<u>.419</u>	1 22	7 2	- 1-0	1 13,1	14,3	10,2	+	120,0					,		1		1-1	t	T		Τ.
DP (Dépérissement partiel)		2				1	٠			-		ا بيا	1		1300				5,0	7 0 3	2,6 23	£ 10				1191	1		20.0	14.3	1 15	1.7	-+		23,7		15.4	18.2	12.0	42.9	75.0	30,8	5.2
EL (Épidémie légère)		9 57,1		14,3	27,9	37,0	17,5	120,1	12,9	27,6	10.0	14.1	4.0	177	31.9		5.9				2,6 23 1,3				8 10,0		7.1	27 3	120,0	+	+ + +		7.7				7.7	T	8,0		1	15,4	5,2
CHP (Chablis partiel)	10	7 7,1			—	13,7	10,0	4.4	9,7	2,9	10.0	4.0	R'n	77	123	-+:	2.3	-+-	·	2,4	- 1		-10		×1,0,0	1	7.1	1,,,,	† —	 	1	4.4	-				1		T	1	T		L
INP (Inondation partielle)		4	-	14,3		₩	-	11			<u> </u>		-	۲4	1	\rightarrow	-+	-+	-+		-	+	-+-	+	+	+	1	-	†	†	1		\neg t					1		T	1		
SUC (Acénculture)		11				┺			L	Ц				Щ.					1													_					•						
Localisation par sous région						_	,			1				- no -	100	3613	5.51.	6 7 1 4	2 2 1	361.	E 11 15	7 7 7 2	0 10	7115	al	4.8	14.3	_		_	11	13.0		- 1	7.9		23 1	9.1	1	4.8		1	8.6
3a-M	23		16,0					10,2			25.0			38,5	80					13,8 1 32,8 2	5,1 17	15 14	U 10	11:5	0110	0 19.1		\vdash	60.0	14.3			7.7	45.5		100,0		63 6	160 r	30 1	50 0	46,2	
3a-S	49	7 64,3				40,7		14,6				21,0			41,3				6,7	22,0 2	冶위성	14 72	12 110	1110	5 10	0 19,1		9,1	20,0		10,0						7.7	182	40 0	42 9	25,0	23,1	
											100	1269	1 14 N	23,1	134.8	19 11 '	5,9	3,3	9.3	17 2 4	U.SI 25							1 2,1	1 40,0	1 20.0	1.0,01	-,- [· / L			L			1		1	+ 1 = 1	11 12
3a-T	47	4 14,3	12,0	14.3	23,3	14.5	1/,5	33,2	19,4	20,7	10,0	1555	24-	45	1 3 5 1	0 1	20 4 1 -		1	1211	131 2	0 0	1 2	n 10	0 30	0 28 6	71	45.5		57 1	30 n 2	21 7 6	151	27 3	531		7.7	9.1	1		1	15.4	1 25.
	3.	- 110	1.50	1 12 0	130	1407	17.0	112 5	21.0	110	En	16 7	240	15 4	2,2 13.8	9 1 3	29 4 2	50	. ,	12,1	3 5	9 8	1 36	0 18	5 10 0 30	0 28 6	7.1	45,5	20,0		30,0 2 40.0 5				5,3 15.8		7.7 38.5		+	14.3	25.0	15.4	25, 4 39

ANNEXE 3 (suite)

	_																G	roupe	d'es	pèces	indic	catric	es																		
Variables bio-physiques	Nb. de	AUR /	AUR	AUR RUP SPS	AUR (CLB DI	E ER	E ERE	ERE DIE	ERE DIE TIC	FRE	ERE ERP TIC	ERE I	RE E	RÉ ER UI RU	E ÉRI	ERE	ERE	ERE	EDE	CDE	ERP		PLS R	UI SP	s sr Gl	S SF	S TI	IC TI	C TH	TIC P VIL	VA	A VAA	VAA	VAA PLS	VAM	VAM DIE	VAM OXM	VAM V	VAM SPS	VII
ype physionomique																				,					-1		- 1.00	, alia	0.00	olo:	31100	1100	olea i	lion (100.0	100.0	os n	06 al	ion of	92.3	Tim
O (Forêt)	2001	100,0	92 DI	85.7 1	00.00	92,6 97	5 98,	9 100	0 99,1	100,0	99,1	100,0	100,00	9,3 7	5,2 100	0 100	0 100	100,	0 98,9	100,0	100,0	99,3	97,416	30,0 e	U 92	9 54	. I'u	יטוןע,נ	1,0 90	0 4	311007	1100	2,6	100,	1,00.0	100,0	40	4.8	.00,0	77	1
B (arbustaie)	34		80	14,3		5.6	0,7	7	1,0		0,9			0,7 2	3,8			-	11			0,/	2,0 1	10,01		1 30	1	+		4		┰	5.3		+		7,0	7,0			1
D (Non déterminé)	12				I	1,9 2,	5 0,4	<u> </u>										┸	ᆜ.					10,0 14	1,3	9	<u>ـــــــــــــــــــــــــــــــــــــ</u>				`		1,5								
ype de couvert (Forêt et arbuste	(e)																					_	-			 -						_	16.3	_	1				\neg		_
D (Non déterminé)	1 12					1.9 2	5 0.4	•	T									1_	<u> </u>					10,0 1		9	4-	+-	- 1 -	4.	4 61.5	1	5,3	50.0	77	27.3	20.0				60
(Feuilly)		14,3	24 D	28.6	2.3	16,7 25	0 46	0 29,0	38,1	55,0	62,4	58,0	53,9	29,7 7	1,4 41	,2 91,	7 75,0	37,9	64,5	35,3	69,4	65,5	64,1	20,03	3,11	-	20		1 //0		0 15.4				111		16.0	14 3		_	tř
F (Mélangés à dominance feuillu)		35,7			14.0	20.4 25	0 27	7 33	40,0	35,0	21,3	32,0	46,2	38,4 1	9,1 35	3 8,	25,0	41,4	[25,0	35,3	25,8	17,3	23,1	10,0 9	15 14	13 33		쓓	6 30	113	4 23 1	1 3	23 /	50.0	38,5				37.5	15 4	
R (Mélangés à domi. résineuse)	33/	14 3	20 0		27,9	29,6 20	0 19	3 17	20,0	5,0	13,5	8,0		21,0 4	8 11	.8				23,5	4,8	15,1	44		9,1 7, 9,1 78					34	0 23,		4 31.6		539	27.3	36 D	47 6	62,5	84 6	it i
(Résineux)	257	35,7	36.0	71,4	55,8	31,5 27	,5 6,	6 19,	1,9	5,0	2,9	2,0		10,9	,8 11	.8		3,5	3,2	5,9		2,2	5,1 1	יו וַט,טפ	9,11 /8	,6 63	0,0 [00.	1,0 14	.,5	34	٠,	130	4 317	1	133,3	2.,5	130,0				_
lasse de densité de couvert																												-	-		+-	-	163	_	_		T	1			т
D (Non déterminé)	1 42			$\neg \tau$		1.9 2	5 0	4		T			\Box T	\Box		\perp		1	4_	1		<u> </u>		10.0 1		9		. .	 	4.		1	5,3 6 21.		177	18 2	16.0	73 8	12,5	77	1
(> 80%)			16.0	14.3				21 22	44,8	40,0	59,8	52,0	46,2	32,6 2	3,8 23	5 33	3 58,	34,5	53,8	47,1	41,9	56,1	59,0	20,0 1	4,3 21	4	40	1,0 4	2,9 10	10120	1 61,	1154	2 36 6	1100	30.8	36.4	29.0	33 3	25 D	39.5	
(51% à 80%)	1 📸	28,6 42,9	44 0	42.9	44.2	46.3 25	0 38	3 45	2 30.5	35,0	33,9	34,0	23,1	30,4 3	3,3 23	5 50	0 25,0	41,4	1 29,0	23.5	38,7	32,4	23,1	20,0 2	B 6 28	1,6 16	5,2	- 12t	0 0	0 30	. 1 38;		2 36 t 3 36 t		무음은	30,4 45.6	48.0	39 1	50,0	130,3	ť
(41% à 60%)	413	42,9 21,4 7,1	32 D	14.3	30.2	14.8 3	0.0 17	9 19,	23.8	25,0	6,3	14,0	23,1	35,5 4	2,9 47	1 8	3 16,	24,	17,2	29,4	17,7	10,8	15,4	40 0 2	8.6 42	9 4	2 5	1,0 1 20	1,6 20	1.0 34		- 21	3 30.0	'	101,3	45,5	800	78	12,5	23 1	11-
(25% à 40%)	4	71	8.0	28.6	4.7	3,7 2	5 2,	2 1,6	1,0				7,7	1,5	5	9 B	3				1,6	0,7	2,6	יןט טו	4.3 /	.1 2/	,3		10	1,01 4	;—			4			10,0	14.0	12,0	1.7,	_
spèce dominante du type fo	restler.	Pouvent	*****	ser 4 mil	tres)		-			-										-												_			-		_	-			_
UR	1 12	14,3	16.0	143	23	1			_					1.5	1,8			1,7								4				_		-					4.0			+—	+
JR	208		10,0			1.9	112	8 12	<u> </u>	5.0	8,9	18.0		19,6 1	4,3 29	14 16	7 8.3	31,0	16,1	35,3	37,1	5,0	10,3				- 20	0,0	10	0,0	23,	Ц.,	-		+	10.3		40			$^{+}$
OP		7,1	An		93	13,0 2	50 9	9 16	1 33.3	25.0	4.0	8.0	23,1	18,8 1	4.3 5	9 33	3 41,	8,6	4,3	5,9	6,5	7,9	\Box	10,01	4,3				_ 2	10 B	1 4	18	2 21.	1 50,	7,7	10,2	16,0	4,0		₩	+
ET	1 40	1	10,0	-	7,5	13,0	-	٠,٠	1	1	0.3			0.7						I		U,/_							٠.,	_		+-	5.3			40.5		-		+	+
HR	5	1	-	_	_	19 7	5 1.	8 3	3.8	1	3.5		7,7		5	,9			3,2			10,1	-						- 111	0,0		+-	- 5,3	-	+	18,2	4.0	-		+	+
PB		7.1	-			19 2						2,0		1,5					2,2		1,6	0,7	2,6		1,8	9	11			-+-		+	-1:-	1 50	15,4	77.2			EO 0	630	
PN		21.4		429	39.5	11,1 1		-			0,3			0.7				3,5	_	5,9		0,7			5 35	5,7 2	7,3 2	0,0	-	4	4				15,4	21,3	12.0	4,8	30,0	133,	+
PR		7.1	_	12.5		5,6 1		\top	1,0	1				2,2				1				0,7	_		1,8 7	-1-1-		_+-	-	-+		10	,2 10		15,4		12,0	1,0		 	+
RA	·	1	8,0			1			1	T										L.	<u> </u>	_				-			-			+				 	+	+		+	+
RE	7	7	-			\vdash	2	.6	_		0,6	4,0		4,4	4,8 5	,9	16,	7 8,6	1,1			-		\vdash	_			-	-+		+			+		 	+	+-		+	+
RP	1 7		_			1	$\neg \vdash$	_	\top	T	2,5	2,0								1	ــــ		7,7	\rightarrow				\rightarrow		 -	+,,	, a	1 2,6	-	+	+	12.0	+		+	+
RR		21,4	$\overline{}$		2.3	37 5	5.0 9	9 14	5 10,	10,0	8,3	8,0	7.7	10,1	4,8 5	9 16	7 16	7 1.7	15,	23,5	6.5	16,5	10.5		8			-1,			7 38			'	+-	┼─	112,00	+-	-	+	7
RS	53					37 3	2.5 2€	3,8 11	3 9,5	20,0	47.4	42,0	38,5	2,2	28,6 1	7,7 25	هـــــــــــــــــــــــــــــــــــــ	6.9	46,	5,9	40,3	34,5	43,6	י טיטו	2.5	-	-+	- 13	41 2	0,010	, 130,	7 7	' +	+-	+-		+	 		+	+
RA		1						\Box			0,3						_		_+_		1 3 5		\vdash	-	- 	1	-+	+		-10	1.0			+-		-	+	+		+-	+
RN	2	6	4,0				0	7		Г.		L	7,7		!	9		19	<u> </u>	╁—	3,2	125.7	23,1	-	4.8			-+-	-+		,,0	+		+-	+-	 	+-	_	-	_	7
HEG	6	В				5,6	1	.1			5,5	4,0		0,7				_	+-	-	₩	113,/	23,1	-+		1 1	8.2		\rightarrow			+		+-	+	1		T		7.7	
MEL		4					\perp	\perp		1	↓_	L	-			-			1.1	+-	├ ──	+	\vdash	⊢	+	-'+'	<u> </u>	+		14	4	+-	_†	+		†	T	1		1	+
DSV	1	4					0	4		1	1_	—							42	+	├	+	+	\vdash		\dashv		-+	-	- 4		+-	-	+	+	_	1	-	1	1	1
EB		1								1_	1		1						111	+	-	133	2.5					-+	-+	-+?	''+-	-1	5.	3	+-	1	1	1	1		1
PEG		2					10	4 4	8 9,5	5,0	114	1 2,0	177	0.7	4,8					5,9	116				9.5	-	-		-	14	4	116	2 2			1		9,5		1	T
PET		3 7,1		14,3	2,3	7,4 1	0,0 4	0 1	6 112,	4 25,0	106	2.0	177	5.8	14,3	-+-	-18.	3 3	2 4.	5.9	1,0	3,6	+	+	-,-		-	-	1	0.01	-		2 13		7.7	18.2			12,5	7.7	J
PIB		1			2,3	1,9	7.5 4	4 4	B 13,	3	3,2	<u> </u>	├	5.8			+	+	+	1 2,9	+	130	 - 		4.8	+	-+		-+	-~-	+-	-†"	10		23.1		8,0		12,5	7.7	汀
PIG		3			_		2.5			+	+-	├	├	\vdash			-+-	+-	+-	+	+	0.7	+	1-1		-	-+	_		\neg		9	1 2		7.7		1	4,8		1	J
PIR		2	L.		L	3,7				+	1	├	۰	107	-+-	-	8	- -	1,	+	+-	+ ",	 	 	4,8	-+	-	\top		_	\top	7			7.	T	1				I
RP		Θ	4.0		_	11		7		+	03			2,2	-+-	5.9	−+°			5,9	+-	77	7.7			7.1	-12	0.0		\neg	\top	\top	_	1	7.7		T-				1
PRU		2	١	↓	123	1,9	- 13	3 4	٠,,	150	154	2,0	 	9.4		1.8	-	-+-	13:		137	129	126	120 0	9.5 7	7.1	9.1 2	0.0	4,3 2	0.01	3.0 23	JI.	2.	6	7.7	18,2	2 B,0	9,5		23,	J
SAB	1 14	1 7,1	112.0	4	16,3	24,1	10,019	1,1 16	447	1 20	152	12,0	-	9.4	+'	''° -	+	1		+	+~~	+		10.0	-, /		-		<u>t-</u>			\top	1	T							
SAL		2	ـــا	₩	₩	+	-+-			+	+	+	┼─			\dashv	+	+-		+	t^-	t	 	 	\neg			\neg							I						-
SQA		1	4,0		٠	اا					1	4.0	+	100 1	9.5	<u> </u>	-+-	- A	F 1	5,9	+	0.7	 	30.0	4.8 2	1.4	7.3 2	0.0	28,6	3	4,8				7,7	\Box		4,8	25,0)	
THO		2 7.1	144,0	28,6	114,0	1111		5 6	2415	'	157	1.0	+	144	331		.3	+-	~+-	+	+	+~	1-	177					-	1				\perp	\perp					\perp	
TIL		4	4-	-	_	++		냎	-		+	┼	+		-+	-+-	-	-	-	+	+-	+	 	10.0	14.3		9,1			1	1,4	T	5	3							_]
ND		21	1	1	ı	[1,9]	2,5 0	J,4]		1		1	1	L										1-1-1																	

r l'es gunness sunt exprenses en nequence relative. To des renéres dosarres dens checune des classes de rodies des ministres en nequence relative d'une classe à l'étude est supérieure à 50%, elle est considéré comme significative. Enfin, si elle est supérieure à 75% on la considère très significative.

																	ı	Ess	enc	e (2)														-		rigi o gi	ne que ⁽³	1)			Sous-ré	gion école	ogique ⁽³⁾	
Végétation potentielle		Type forestier	Nb. De rel.	ERS	TIL	FRA	CE	T 0:	sv	вој	CHR	HE	GSA	EPI	тн	FR	N FR	PE	PNE	PR	PRU	PIÐ	PIR	PIG	MEL	ВОР	BOG	so	ASOL	PE	T PEB	ERR	BR		Π	Ī	İ		Р	3a-M 236 rel. (11,53%) ⁴	3a-S 497 rel. (24,28%)	3a-T 474 rel. (23,16%)	3b-M 326 (el. (15,93%)	3b-T 514 rel. (25,11%)
l		ERS	54	97	20	5	12	, ,	18	11	6	27	14	7	0	1	0		0	0	3	0	0	0	0	1	0	1	0	6	0	11	7	0	20		0	72		13	2	7	28	50
! !		ERS-BOJ-SAB	3	86	25	6				41	ŏ	15		26	10	11	4 0		0	6	12	0	0	0	0	13	0	6	0	0	0	31	33	0	33		0	33		0	0	33	33	33
1 1		ERS-BOJ-TIL		97	42	Ä	_			47	B	28	35	10	8	1 8			0	0	8	4	0	0	0	0	٥	0	0	0	0	21	14	0	0	0	0	86		71	0	14	0	14
	5	ERS-HEO			16	10	14		18	9	7	59	18	6	0	5	1	1	0	2	11	6	0	0	0	0	٥	0	0	7	0	11	5	0	11	0	0	84			0	16	47	32
1	,	ERS-HEG-TIL	4	79	47	9	10		29	11	9	58	26	0	0	70			0	5	24	0	0	0	0	29	0	0		10		5	25	0	0		0	75			0	0	75	25
		ERS-TIL	В	94	54	9	16		25	18	В	32	14	0	14	7	10		0	0	16	0	0	0	0	6	0	0	0	0		4	38		13		0		0		0	0	25	63
FE2	1	HEO-ERS	7	79	16	4			13	16	13	94	21	В	0	0	1		0	0	0	7	0	0	0	0	0	0	0	0		17	29		14	0	0	57		29	0	43	29	0
i I		ERS-TIL-OSV	3	85	55	14	12	2 4	47	17	18	16	16	12	0	To	1		0	0	6	0	0	0	0	22	0	0	0	0		22	0	0	0	10	0	10	_	0	0	0	33	67
		ERS-BOJ	4	76	36	0			20	43	5	25	31	13	0	9		ıΤ	0	0	5	5	0	0	0	22	0	0	_	11		26	0	0	50		0	50		25	0	0	50	25
l '	4	ERS-BOP	4	74		ō		1	14	13	12	7	51	13	0	10		ī	0	0	0	0	0	0	0	54	0	0	0	13		33	50	-	0		0	50			0	0	0	100
		BOP-ERS-SAB	3	51	0	ō	6		0	0	12	14	50	1 15	10	1 6	3 [0	П	0	0	0	٥	8	0	0	61	0	6		24		39	33		33	-	0	33		0	0	33	33	33
1	3	PEO-ERS	1	59	21	O	10	0 1	19	0	12	113	36	5	0	0) (0	0	0	7	0	0	0	11	0	0	0	1:		29	75		0	_	0	25			0	0	0	75
1		ERR	3	36	24	0	10	<u> </u>	0	13	18	14	34	15	0	T		П	0	0	0	24	0	0	0	8	0	8	0	15	5 0	70	33	0	0	0	0	67	_		0	33	0	33
	ا	BOJ-ERS	1	85	0	T o	10	1	10	81	0	24	2:	116	11	9	1	5 T	<u> </u>	0	21	0	0	0	0	0	0	5	0	10	0 0	10	0	0	0	0	0	10			75	25	0	0
1	Ì	BOJ-ERS-HEG	1	54		1 6				51	5	49			O	1	0 (5	0	13	0	0	0	0	0	0	0	0	0	0		31	0		0		0	10			0	0	0	100
1		BOJ-ERS-SAB	1	72		T ö			ō	58	ō	16			14	1	1 (5	0	5	7	0	0	0	0	7	0	0	0	11		35	25		25			50			25	0	D	75
		ERS	73	94	5	T n	_	_	11	28	6	26			8		1	5	0	2	10	3	0	0	0	1	0	2	0	4	0	22	10		14		0	75		3	25	19	14	40
l	1	ERS-BOJ-ERE	4	69	ō	10	10		0	48	0	1:	3 3	11	5	7	7 7	П	0	0	0	0	0	0	0	9	0	0	0	0		34	0	10	0	-		10			25	25	0	50
i	l	ERS-BOJ-ERP	5	82	lò	0	4		9	52	0	17	2	1 11	4	10	īTī	ī T	0	0	4	0	0	0	0	0	0	0	0	10		29	20		0	0	0	80			60	0	20	20
i	l	ERS-BOJ-HEO		89	9	4	10	7	16	51	6	45	2	2 0	70	7		ם כ	0	0	4	0	0	0	0	8	0	5		5		22	13		13			7			0	0	13	75
	l	ERS-BOJ-SAB	9	68	6	0	10)	12	52	10	11	1 41	19	1:		3 (0	0	9	9	7	0	0	0	15	0	0	10	9		25	22		11	_		6			22	11	11	33
l	5	ERS-ERP	5	86	9	4	1 4		17	25	8	31	2	10	0		5	D	0	0	22	0	0	0	0	8	0	0	10	16		26	40		20		<u>. 0</u> .	41			0	0	80	20
l	1	ERS-HEG	16	95	0	0	0	5	13	26	7	6:	2 11	1 10	0			D	0	0	0	11	0	0	0	0	0	3	0	11		21	0		13			8			6	13	31	22
	١	ERS-HEG-BOJ	9	89	11	0	0		14	39	11					_			0	0	14	6	0	0	0	13	0	0	0	10		23	111		11		<u> </u>	71			0	20	20	60
1	1	ERS-HEO-SAB	5	86	6	0	10	<u> </u>	6	31	12				0				0	0	23	0	0	0	0	13	0	1 8				31	20					6		0		25	25	25
l	Į	ERS-PRP	4	78	5	0	5		12	26	0	21			0	_		0	0	5	0	0	0	0	0	12	0	10	0	9		23	0	0			_	2			25	33	33	33
l	Ì	HEG-BOJ-SAB	3	38	8	6	10	PΙ	10	41	0	5			1 1			0	0	15	26	22	0	0	0	0	0	0	- 0			36	0	0	33		0	10			1 - 6	25	0	75
	1	HEG-ERS	4	71	5	0	\Box	o L	11	24	0	8						0	0	0_	11	20	0	0	0	0	0	10	0	10		15	0		- -	10	10	7			1 0	0	50	25
FE3	ł	PRU	4	39	0	0	10	0	11	21	9				1			0	0	12	84	0	0	0	0	10	0	0	0			14	25 50			+ "	_	5			1 0	 	100	0
		PRU-ER8	4	61	9	0	10	0	11	36	5	2		_			_	0	0	11	73	0	0	0	0	9	0	0		_		23	_	_				_			1 0	0	33	33
ł		BOJ	3	59		0			10	49		2					_	0	0	0	8	8	0	0	10	0	10	10	0			30	0 67					6			33	33	- 33	33
1	l	BOJ-ERR-ERS	3	59	Ιö	0		0	0	44		_						0	0	0	0	8	0	10	10	24	0	10				47	33		_	10	+ 0	6			33	0	33	33
ľ	l	BOJ-ERS-ERR	3	81	0	0			0	69								0	0	0	0	0	0	0	10	6	0	6		19		40	33	+ :	10	+ 6	1 0	9		2	24	20	12	43
l	l	ERS-BOJ	51	91		0			9	51								0	0	7	5	3	0	0	0	2	0		_			37	1 0	10	20			8			0	60	40	1 0
1	1 .	ERS-BOP	5	84		_			8	31								0	0	4	0	0	10	0	0	41	0	10	0	1;		51	38		+20	+ 5	10	+ 6		0	13	13	1 0	75
	1	ERS-ERR	8	83					4	36								<u>-</u>	6	0	6	0	0	0	0	12	0	+ 6			-	48	1 38		67	10					1 0	33	1 0	0
	1	ERS-ERR-EPE		71		<u> </u>			0	32								<u> </u>	0	0	0 8	0	0	10	0	9	10	10				41	10	10			0	8			20	0	1 0	80
I	1	ERS-ERR-SAE		59					0	43								<u>-</u>	0	22	10	10	+	0	10	0	+ 0	-				48	10	- -			_		0 0		1 0	1 0	1 0	33
į.	l	HEG-ERR-ER		49					14	13								0	0	23	25	10	10	10	1 ,	1 ,	١٢	1 6				33	١ů	1 6	10	10	1 -		00 0		33	67	l ŏ	0
ı		BOJ-ERS-ERP		69		Ť	_	•	0_	64	_			_		_		-	<u> </u>	÷	5	10	0	10	0	65	1 6	—				39	10	0 0		_		+"	_		25	0	25	50
1	Ι.	BOP-ERS-BO		59					5	43					_			0	٠	0	1 6	0	0		0		1 6	_				63							00 (0	0	0	67
1	3	ERR-ERS-HE			0					37			6 4					 	0	13	1 6	12		10	10		1 0			_		50										1 0	-0	33
1	i	ERR-HEG-SAE	3	1 32	10	0	பட	0	8	42	16	1 4	و [ه	B 2	2 0	<u>' L'</u>	12	٧	v l	13	٠,	1 12	1.0		1 0	1 23		1."			, I o	1 30		1				~						

ANNEXE 4 (suite)

																	•			nce	J21													Т			Or	igin	-		т				
Végétation	Stade	Туре	Nb. Do	<u> </u>	т-	-	_		_	-	_					_			330	T	, ,		_													é	colo	_			1	Sous-ré	gion écol	ogique ⁽³⁾	
potentielle	évolutif		ret.		_		W	CET	osı	VBC	on c	HR	IE G	SAB	ЕРВ	тно	FRN	FRF	ΕP	NEF	P	RUF	18	PIR	PIG	MEL	ВОГ	800	so	ASC	DD PI	ET PI	ВЕ	RR	BR	ж	ст	ES	FR	NA	3a-M 236 ret. (11,53%)	3a-S 497 rel. 4 (24,28%)	3a-T 474 reL (23,16%)	3b-M 326 rel. (15,93%)	3b-T 514 rel. (25,11%)
		ERS ERS-HEG		99				8	43	2		9 24			6	0	0	0						0	0	0	6	0				6 (,	16	8	0	7	0	0	92	0 0	8	46	23	23
		ERS-HEG-OSV	6	93	16	1	7	4	44						18 9	0	0	0					_	0	0	0	0	0	0			0 0				0					0 40	0	40	20	0
FE5	5	ERS-OSV-CHR	15	96 82				4	49			20	20	27	15	3	5	0	0	10		0	4	0	0	0	7	0	0	10		7 2							0	83 73		0	17	13	33 47
		HEO-ERS	3	82				0						32 24	29	0	0	0					-	0	0	0	26	0	0			7 (0	0	0	0	50	67	0	17	0	17
		HEO-ERS-OSV	3	87	-		5]	0	45	3	5 1	10	77		0	0		0						6	0	0	0	0	0			0 6								100 67		0	67	67	0
		CHR-ERS CHR-ERS-OSV	4	73 65			-	5	42 54						26	0	0	0	Ö						11	0	21	5	0		1	0 0		35	50	0				50		0	25	0	25
FE6	5	ERS-CHR-OSV	3	90		2	9	10	53						15	0	0	0	0				-	0	0	0	20	0	0											40		0	0	20	20
	-	PIB-SAB CHR-ERR	3	8	0			0	24			15	13	59	15	0	0	Ó	0	8		0 7	3	12	ō	0	0	0									33			33		0	33	0	0
	·	BOJ-ERE	3	27 37		-		0	24	-		0	_	42 39	30 13	0	0	90	0		_			7		٥	24	0	-	_	_	0	_	_	25		0			75	50	0	25	0	25
		BOJ-ER8	7	58	0	_		ŏ		70							8	0	0	11				0	0	0	13	0	0			2 0	_							100 1	0	0	0	33	67
	5	BOJ-ERS-PRU BOJ-ERS-SAB	3	45				0	0	57					10		0	0		6	1	5	0	0	0	0	0	0	ō		_									86 (14	29 33	14 67	43 0
		ERR-BOJ-SAB	5	51 28				0	0	46					24 30	13	17	0	10						0	0	5	0	0							0	25	0	0	50 (0	25	0	0	75
MUT		PRU-BOJ	4	41	23	1		0	0	57	7	0 :			12		0	0							하	0	36 0	0	10											100 (0	40 25	20	40
'		BOJ-BOP-EPB	8	36	7		_	8	0							12	-	0	0	0					0	0	7	0	0	0	0	0	- 3	27	0 1	0				83 (17	17	50 17	33
l		BOJ-BOP-SAB	5	35	0	10	\perp	0	ō	63						16	0	0	0	13					0	0	40	0	6											00 0		33	67	0	0
		BOJ-ERR BOJ-ERR-ERS	5	39 43				0	0	64					26	0	16	0	0	0	I	0 .	1	0	0	0	10	0	0									~ _		80 C		20	0 60	40 20	60
		BOJ-ERR-SAB		37				0	0	59							29 11	0	7	0		5				0	6	0	0										0	67 C	33	0	33	33	0
		BOJ-ERE-ERS	3	48	_	0	\perp	0	0	75	5 (0 1	5	24			24	0	0			5 1				0	23	0	5						0 0					75 C	4.5	33	25 33	25 0	25
		BOJ-ERE ERR-BOJ-SAB	6	17	0			}	0	69 41					18	8	27	0	0	4						Ö	7	0	7	0	0	0	1	5	0 (_	17	-		83 C		50	17	0	33
l	- 1	FRN-BOJ-SAB		20				5	ő	48							62	0	0	0		0 (0	32 0	0	10 5						0 0					75 C		25	50	25	0
- 1	ŀ	PIB-SAB PRU	3	14				0	0	14							0	0	36	19		6	1 3	22	Ö	ō	18	0	16						00 0					50 C		0	100	0	75 0
i	5	SAB	3	0	13			ö	B	30 20							0	0	0	9						-	9 24	0	5	0					5 (0	0	75 O	0	25	25	25	25
	Ť	SAB-BOJ SAB-PRU-BOJ	4 3		0			0	0	51			5 (61 1	14	16	0	0	0	9) (0	9	0	0	0					3 0		0			67 0 75 0		0	0 25	33	67
ı	ŀ	SAB-THO-BOJ		18	0			응	6	49							28 25	0	14	17		8 6				0	6	0	0	0					3 0) 3	33 1	0 1	0	33 0	0	0	0	100	75 0
i		THO	5	8	0	0	\perp	0	0	31		1	0 :	37 1	17	78	15	0	18	0	1	3 9				6	19 19	0	12 6	0					0 0		0 (_		00 0	•	33 60	33	33	0
		THO-BOJ THO-SAB	3 5		0			0	-0-	34							12	0	17	0		1			0	0	24	0	6	0	0	0	3	0 (0 0		0 0			00 0		67	33	40 0	0
1		BOJ-BOP-EPB	4	-	Ô	ō		0	ō	56					_	$\overline{}$	26 0	0	13	22						0	12	0	12		0				0 0		0 0			60 O	20	20	0	20	40
		BOJ-BOP-SAB BOJ-ERR-SAB		11	0			0	0	61			0 (52 2	24	15	10	0	В	18	I	1	I				43	0	10		1 8				4 0		0 0			00 0 96 0		50 14	50 43	0	43
ı		PIB-SAB-ERR	* †	5	0			}	0	56							28	0	28	18						0	6 35	0	4	0	17		4	4 (0 0	1	7 (0 8	33 0	17	33	0	0	50
		SAB-BOP	3	6	0			0	0	20	0) (0 2	20	16	0	0	15	0	0						54	0	12	0	0						0 0			50 0 00 0		25 33	25 33	0	0
MJ2		SAB-EPB-ERR			0	8		0	0	33 27				6 1				8	13	17							31	0	10		0	0	4	8 (0	5	0 0			50 0	25	0	50	0 25	33
1		OP-ERR-EPB	6	-	B	ő	-	ö	ò	12		1						0	18	25							15 63	0	12	0	10						0 0	_		0 0	0	0	60	40	0
		OP-ERR-EPR	3 5		0			0	٥	0						22	0	0	48	29	0	10	1		0	0	68	0	6	0	32						D 0			60 0 33 0	0	33 100	33 0	17	0 0
i	Ī	OP-ERR-PIB	7		0	8		0	0	12								0	23	50 14							53 48	0	17	0	30		6	1 8			0 0	0	2	0 0	0	100	0	0	0
ł					0	0	$\mathbf{L}^{\mathbf{q}}$	0	0	12	6	1) 5	8 1	8	0	0	ō	0	0							66	0	12	0	23				-	_	5 C			0 0	0	25 33	75	0	0
I		RR-BOJ			0	0		-	0	16 42				1 1				0	0	12	10						64	0	12	Ö	0	0	26	6 0	0	-	0 0	0	11	00 0	0	33	0	0	67 67
- 1	[6	OP-ERR-BOJ	3	6	0	0		0]	0	42	0	0	1 4	0 2	9	13	0	0	0	24	0	6	0				12 75	0	18	0	14									7 0	67 0	33	0	0	0
- 1		RR-BOP-SAB			0	0		_	0	19	_		3						13	12		4	0)	0	42	0	6	0	29	0	55	5 60					- 1 -	0 0	0	100	40	0	40
	E	OP-ERR	10	8	0	٩	10	1	ŏ	15									11	20 19							83 76	0	14	0	12		52			1				3 0	0	83	17	0	0
- 1					0	0			0	8					2	0	0	0	4	11	0	19	0	1)	0	79	0	12	0	54		48		0 0		0 0			0 0	0	80	20	0	20
- 1	1	RR-BOP	3	0	0	0			0	6									31 13	10 29							73 61	0	6	0	62		49		7 0	0	0	0	3	3 0	0	67	0	0	33
- 1				10	10	٥	0	1	6	6	6	8	1	7 2	4	0	0	0	14	0							26	0	15	0	8		70 52								0	33	33	0	33
				6		9 0			0	36									25	0						ō	49	0	10	0	67	0	63	33	0				_		0	67	33	33	0
			<u> </u>	<u> </u>	۳	۰		٠.	۰	30	1 0	.1.0	1,	411	41	0	10	0	0	0	0	12	10		1	0	25	0	5	0	11	0	23	0	0	25	5 25	5 0	5	0 0	0	75	25	0	0

			Nb.	Γ															Ε	880	nc	e (2)														T			Orig olog	ine Ique	3)			Sous-ré	gion écol	ogique ⁽³⁾	
/égétation potentielle		Type forestier	De rel.	ERS	S TI	L F	RA	CE	10	sv	во.	СН	RH	EGS	ABE	PB	гно	FRN	FRI	EP	N E	PRI	PRU	PIB	PIR	PIG	ME	ВО	РВ	og s	SOA	son	PET	PEB	ERF	RB	IR CH	ı	f E	S FF	N.	A F	3a-M 236 rel. (11,53%) ⁴	3a-S 497 rel. (24,28%)	3a-T 474 rel. (23,16%)	3b-M 326 rel. (15,93%)	3b-T 514 rel. (25,11%
	5	PIB-PIR	3	0			0	0		0	0						0	0	0				0		40					0	6	0	47		13		7 0						33 25	67	75	0	0
		PIB-SAB EPB-SAB-BOP	3	5			6	0		0	0	7	-			34 42	13	0	0		_	0	0	13	19	0	0	15		위	10	0	39		22		3 0	_		_	1 3		0	0	67	0	33
		BOP-SAB	3	ö			÷	0		ö	+	+ 6				20	0	ō	0			14	0	6	0	0	10	77		ŏ	10	0	8	ō	19		13 0	-	0	_	_		0	33	33	0	33
MS2	3	PET-BOP-SAB	3	8	10	0	0	0	I	G	10	0		0	57		0	0	0			15	6	10	0	0	0	55		0	0	0	69	0	20		00 0						0	33	33	33	0
		PET-SAB	5		4		0	ļ.	-	0	9		_			19	0	9	0			0	0	12	0	18	0	56		0	17	0	72	0	19		0 0		0 0	_	5		20	75	20 25	0	60
	2	BOP-PET	1 4	7			0	0		0	100	10					14	9	10			29	-	0	10	0	10	66		22	13	0	58		23		7 0						0	100	0	0	0
	1	Arbustif	1 4				ō	ŏ		ō	ŏ					5	0	ō	ō	_	_	0	0	11	Ó	0	ō	9	_	0	0	0	22		5		0 0	2	5 C	2	2	5 2	5 0	0	0	25	75
		SAB-THO	3	0	_	0	0	0	I	0	10						54	6	0			0	0	0	0	0	32			0	6	0	0	0	18		0 0						0	33	0	67	0
		THO	3	0			0	0	_	0	0						72	28	0			유	0	6	0	0	10	26		0	8	12	0	0	10 26		0 0) (0 0	0 33	0	33	0	100
RC3	5	THO-EPB	3	5		-	0	0		0	19						68	13	0				28	0	0	0	14			-	11	0	0	i	18		0 0		_			0 0	25	25	25	25	1 0
		THO-MEL	17	10		H	ŏ	ŏ		0	9	10					61	19				ō	0	0	0	0	45			0	9	0	0	0	10		0 0		1					25	0	25	50
		THO-SAB	3	13		0	0	O		0	8	6			_		67	36	0	_	_	22	В	10	0	0	0	_	_	0	12	0	0	22	_		0 0	_	-		-			0	0	33	33
		EPN	9	0		9	0	0		0	0						19	0	0			0	0	13	10	19				0	15 26	0	14	0	12		56 0		1 0			5 0	0	78 75	11 25	0	11
	5	EPN-PIB EPN-SAB	1	0		0	0	0		0	0					12	0	卡	1 6			• †	Ö	21	0	0	9			ö	13	ő	21		23		0 0		0 0			0 0		50	50	0	0
	-	EPN-BOP	3	Ť		ŏ	ō	0		ō	ō	_	_			0	0	0	0			0	0	15	10	12				0	14	0	10		38		33 0		1					100	0	0	0
RE2	<u> </u>	EPN-SAB-BOP	3	0		0	0	O		0	0	0	_			14	0	0	0			0	0	13	10	13				0	13	0	23		33		33 O		7 0	-	_	1		33	67	0	40
	3	PIO-EPN PIO-EPR	3	4		0	0	4		0	6					19	10	0	0			0 65	0	10 26	6	66				0	10	0	18		25		80 0 67 0					3 (33	0	0	67
	1	PIG	1 7	1 8				1 8		0	10					5	0	0				10	0	ő	ō	76				0	0	0	ō		13	1	00 0			0	10			0	0	0	50
	1	Arbustif	4	Ō	I	ō	0	0		0	0					12	Ó	0		_		0	0	o	0	0	0			0	0	0	36		11		0 0		5 (25 33	0	75	33
RE3	5	EPN-MEL	9		_	0	0	0		0	0	_	_	_	19 16	0	31	0				0	0	14	0	0				0	8	0	0		7	_	0 0	-	1 (-	-	8 (0 0	100	22	1 0	0
RP1	-	PIB-PIR	1 3	_		허	÷	۱,	_	÷	1 6	_	_			28	;	ō	_			13	ŏ	59	47	0	10			0	6	0	33		41	-	00 0	_	1	_	_) (0	33	67	0	0
		BOJ-ERS-THO	-	51	_	13	0	10		6	62					23	49	10				0	15	0	0	0				0	0	0	0	0	29		0 0					00		0	67	0	0
	1	BOJ-THO	5	47		0	0	10		0	76					26	57	22				0	23	10	0	0				}	6	0	0	0	27		0 0		0 0			0 0		60	20	33	0
	l	PRU-THO	3 6	36		6	6	0		6	34 26					10	47	0				10 18	86 72	16	7	0				0	0	0	10	1 0	18		33 6		í li				17	17	1 0	67	
	l	SAB-THO	1 6	1		0	0	0		+	23		_			23	51	ō	Ťŏ			19	24	29	0	ō	Ĭ	2	3	0	8	0	4	7	24		0 0		7 (67	0	17	17
	5	SAB-THO-BOJ	14			0	0	0		0	41					24	51	11				0	24	11	0	0				0	9	0	0	0	39		0 0		1			9 1	0	50	50	11	22
	1	THO-EPB-BOJ	9	1 8		밁	0	18		0	59					13	77	18				24	16	10	0	0				0	6	0	6	19	30		0 0		11:			00		67	33	1 '0	0
	l	THO-ERE	1 3	1 6		H	0	1 8		-	35					16	73	10				6	6	0	ō	0				0	8	0	14		6		ő d		5 0		11	00		67	0	0	33
RS1	1	THO-SAB	9			0	0	0		3	29					23	13	0				21	12	19	13	0				0	8	0	0		26		22 () (8		78	0	11	11
K31		THO-SAB-BOJ				4	5			6	46					21	65 45	13	-	_	8	6	21	15	0	0	_	2		0	0	0	13	16	25		0 0		7 1			3		33	25	8	67
	1	BOJ-ERR-THO				<u> </u>	0	1 6		0	57					17 24	48	24	100		1	14	7	0	10	10				ö	23	0	19		49		25 0		5 1			0		50	25	0	25
	1	BOJ-SAB	13	2		ò	ő	Ť		Ö	69			10	54	27	40	0	0			12	0	6	0	0				0	0	0	0	0	23		0 0		3 (7		0	33	33	33
	1 4	ERS-BOJ	1			0	٩	10		13	51					15	42	0	0			0	12	10	0	0				0	0	0	14	0	14		0 0		5 1			5		75	25 13	25	13
		SAB-THO-ERF	8			11	0			5	25					23	46 65	0				8	23	9	H	0				0	12	1 0	15		31		25 (, 6		5		75	25	0	0
		THO-SAB-BOF				ö	ö	17		0	21					24	50	6				23	0	8		0				0	11	0	19		15	5	0 0		0 1) 2		0	0 0	40	0	20	40
	3	BOP-ERR-TH	5 0	1		0	0	-	_	0	25		_	_	_	20	48	-	-	_		16	4	18		0	_			0	10	0	0	0	50		40 () (0		60	20	0	20
	2	ВОР	3	_	7	1	-	-		0		_	_	-	42	16	38	0	_	-	-	22	10	23	22	10	_			0	10	0	29 10		24	_	67 0		_			0		67	67	0	33
RSZ		EPN-SAB SAB-EPB	3		_	0	0		-	0	0				67 70	12	0	0			8	6	-	14		0				0	10	0	6		29		67 (;			0 0	33	33	0	33
	1	SAB-EPN	1 3			0	0			ō	Ť					10	6				6	Ō	0	29		0	26	3	2	0	16	0	6	0	26	6	33 () ;	3) (3		0	67	0	0
	5	EPN	5			0	0			0	10				44	0	0				2	0	0	4		0				0	21	0			14		0 (0 0		10		14	60 29	40	57
RS3	<u> </u>	EPN-SAB EPN-MEL	7 6		+	0			0	0	15				15	0	19	0	_		11	0	0			0				0	19	0								0 0		7		50	0	50	1 3/
	+	AUR	1 5		+				+	0	10				31	9	4				8	8	0	8	0	0	8	3	2	0	14	0	35	17	14	1	20 (0	0 2	0 6	Ö	0 0	60	0	0	40
RS5	5	EPR													40		0	0	10		Ō	73	0	0	0	10	8	1	5	0	6	0	25	0	- 8		67 () [3	0 (\perp	0	0 0	33	0	0	67

⁽¹⁾ Seuls les types forestiers représentés dans au moins 4 relevés ont été retenus.

⁽²⁾ Les donnés sont compilées avec l'indice FA | Indice fréquence/abondance = (fréquence relative X couvert moyen) (4) |

⁽¹⁾ Pour les origines et les régions écologiques les données sont exprimées en % du nombre total de relevés.

⁽⁴⁾Total et pourcentage des relevés, par sous-région écologique.

LISTE DES ESPECES LIGNEUSES POUVANT DEPASSER 4 METRES

Code	Nom botanique	Code	Nom botanique
AME	AMELANCHIER SP	FRP	FRAXINUS PENSYLVANICA
AUC	ALNUS CRISPA	HEG	FAGUS GRANDIFOLIA
AUR	ALNUS RUGOSA	MAS	MALUS SP.
BOG	BETULA POPULIFOLIA	MEL	LARIX LARICINA
BOJ	BETULA ALLEGHANIENSIS	NEM	NEMOPANTHUS MUCRONATUS
ВОР	BETULA PAPYRIFERA	NOC	JUGLANS CINEREA
CAC	CARYA CORDIFORMIS	ORA	ULMUS AMERICANA
CAF	CARYA OVATA	ORR	ULMUS RUBRA
CAR	CARPINUS CAROLINIANA	ORT	ULMUS THOMASII
CEO	CELTIS OCCIDENTALIS	osv	OSTRYA VIRGINIANA
CET	PRUNUS SEROTINA	PEB	POPULUS BALSAMIFERA
СНВ	QUERCUS ALBA	PED	POPULUS DELTOIDES
CHE	QUERCUS BICOLOR	PEG	POPULUS GRANDIDENTATA
CHG	QUERCUS MACROCARPA	PET	POPULUS TREMULOIDES
CHR	QUERCUS RUBRA	PIB	PINUS STROBUS
CRA	CRATAEGUS SP.	PID	PINUS RIGIDA
EPB	PICEA GLAUCA	PIG	PINUS BANKSIANA
EPN	PICEA MARIANA	PIR	PINUS RESINOSA
EPO	PICEA ABIES	PIS	PINUS SYLVESTRIS
EPR	PICEA RUBENS	PRP	PRUNUS PENSYLVANICA
ERA	ACER SACCHARINUM	PRU	TSUGA CANADENSIS
ERE	ACER SPICATUM	PRV	PRUNUS VIRGINIANA
ERG	ACER NEGUNDO	RHT	RHUS TYPHINA
ERN	ACER NIGRUM	SAB	ABIES BALSAMEA
ERP	ACER PENSYLVANICUM	SAL	SALIX SP.
ERR	ACER RUBRUM	SOA	SORBUS AMERICANA
ERS	ACER SACCHARUM	SOD	SORBUS DECORA
FRA	FRAXINUS AMERICANA	THO	THUJA OCCIDENTALIS
FRN	FRAXINUS NIGRA	TIL	TILIA AMERICANA

^{*} Dans une plantation, on note le symbole des essences mises en terre.

Région	Туре	Nb. De				Situat	tion su	r la pe	nte ⁽¹⁾			Indice ⁽²⁾			Inclinaison d	le la pente)		
écologique	éco.		2 (Escar.)	3 (Som.)	4 (HP)	5 (MP)	7 (BP)	0 (TP)	6 (Rep)	8 (Dep.ouv.)	9 (Dep fer)	situation	F (>40%)	E (31 à 40%)	D (16 à 30%)	C (9 à15%)	B (4 à 8%)	A (0 à 3%)	Synthèse de la pente
	FE31	1		100								0,00				1		100	SOM. Pente très faible (A)
	FE32H	33		42	58							0,00			27	42	21	9	HPSOM. Pente forte (C-D)
	FE60	8	13	25	25	25	L		13			0,00		13	38	13	25	13	SOMHP Pente forte (C-D)
	MJ10	В		13	36	13			38		ļ	0,00	13	13	25	25	25	1	HP -REP. Pente forte (C-D)
	MJ20	15	7	20	27	33			13			0,00	27		33	27	13	1	MP -HP Pente forte (C-D)
	MS20	2		50	50		L				l	0,00				50	50	1	SOMHP.Pente modérée (C)
	MS22	18		6	33	50			11			0,00			33	39	28	1	MP -HP Pente forte (C-D)
	RB12	1		1 1	100							0.00				1	100	1	HP Pente faible (B)
	RE20	19		42	26	32						0,00	5	5	37	21	26	5	SOM. A MP Pente forte (C-D)
	RE25S	1		100	↓							0,00				1	100	1	SOM. Pente faible (B)
	RS10	17	6	6	41	41			6			0,00	12	18	41	24		6	HP-MP Pente forte (C-D)
	RS25	1		1		100						0,00				100		1	MP Pente modérée (C)
	RS50	3	33	33	33							0,00	33			33	33	1	Escar A HP Pente modérée (A-B-C-D)
	RS55	2		1					100			0,00				50	50	1	Rep Pente modérée (C)
	FC10	16		13	38	31		6	13			0,06	13	13	25	38	13	1	HPMP. Pente forte (C-D)
	RS52	15		27	13	40			13	7		0,08		7	13	73	7	1	MP -Som. Pente modérée (C)
	FE35	40		5	8	53		3	28	5		0,09			18	35	40	8	MP -Rep. Pente forte (C-D)
	FE52	54		15	22	56	4	2		2	1	0,09		7	28	37	20	7	MP. Pente forte (C-D)
	FE62	86		16	27	44	1	2	5	5		0.09	5	1	40	29	21	5	MPHP. Pente forte (C-D)
	MJ22	110	1	10	22	45	3	4	15	1		0.09	3	4	27	36	24	6	MP -HP Pente forte (C-D)
	RE22	12		1	42	33		8	17		<u> </u>	0.09		· · · · · · · · · · · · · · · · · · ·	8	42	50	1	HP MP Pente faible (B)
	FE22	91		11	23	47	1	7	10	1		0.10	1	3	40	35	16	4	MP -HP Pente forte (C-D)
	RS12	101		8	23	46	1	7	15		1	0.10	2	8	24	29	28	10	MP -HP Pente forte (C-D)
	FE30	10	20	20	10	40		10			 	0.11	10	10	40	30	20	10	MPSom. Pente forte (C-D)
3a	FE32	105		10	9	65	5	4	8		1	0.11	1	2	20	40	25	12	MP. Pente forte (C-D)
Ja	FE25	15		1		67	13		20		 	0.15			20	47	20		MP -Rep Pente forte (C-D)
	RS20	8		50	25	13	13	-			· · · · · · · · · · · · · · · · · · ·	0.15			25	50	13	13	Som -HP Pente modérée (C)
	MJ12	50		8	16	50	8	8	8	2		0,73		8	20	40	20	12	MP. Pente forte (C-D)
	MJ15	19		1		47		5	32	16	 	0,26			5	42	47		
	RP12	19		16	21	26	21		16	10		0,26	5	5	26	26	21	5	MP -Rep. Pente faible (A-B)
	MS25	17		1	12	18	12	6	47	6		0.31	6	6	18				HP ABP Pente forte (C-D)
	RS22	16		44	13	19	19	6	~			0.33	D	В	19	6	29	35	Rep Pente faible (A-B)
	MJ25	38		1 7	3	29	13	11	42	3	ļ					25	50	6	SOM. Pente faible (B)
	RS11	16		25	13	19	19	13	13			0,36		3	11	26	37		RepMP. Pente faible (A-B)
	RS15	49		2	4	27	20	6	31	10		0,46		6		31	31	31	Som. A BP. Pente faible (A-B)
	MF15	25		4	-	36	24		20			0,56			4	39	31	1	Rep -MP Pente modérée (A-B-C-D)
	MS21	17		18	18	-30	47	4		8	4	0,67	4		8	36	12		MP -BP Pente faible (A-B)
	MJ21	27		4	19	15	44	II	18 15			0,87		6		24	18	53	BP Pente très faible
	RE37	2/		1	19	15		4			ļ	0,91		7	15	19	11	48	BP. Pente Faible (A-B)
	RS18			1		ļi	50		50			0,98							BP -Rep Pente très faible (A)
		2			-		50	 	50			0,98					50	50	BPRep. Pente faible (A)
	RT12 MJ28	2 45		50	 _	<u> </u>	50	<u> </u>				1,00	50			1		50	SomBP. Pente très forte (F)
					2	13	36	2	27	9	9	1,35			7	4	22		BPRep. Pente très faible (A)
	RS25S	5		1_1_			60		40	_ 	<u> </u>	1,46				1	60		BPRep. Pente faible (B)
	RE25	9		<u> </u>		22	44	L	11	11	11	1,94				22	33	44	BP. Et dépressions. Pente faible (A-B)
	RS39	3		1_1_	L	33	33	33				1,94			I	1	33		BP -TP Pente très faible (A)
	RS37	9		1	11		44	 	11	11	22	3,35				11	22	67	BP - Dep Fer Pente très faible (A)
j	RE21	9		11		11	67	11				3,55				11	11	78	BP. Pente très faible (A)
	RC38	10		11			70		20	10		3,81				1			BP. Pente très faible (A)
	RS38	16		6			44		13	19	19	4,32			6	1	6		BP. Pente très faible (A)
	RE39	10					80				20	> 4.32				1			BP. Pente très faible (A)

ANNEXE 6 (suite)

Région	Type	Nb.				Situa	tion su	r la pe	nte ⁽¹⁾			Indice ⁽²⁾			inclinaison d	e la pente)		Synthèse de la pente
écologique	éco.	De rel.	2 (Escar.)	3 (Som.)	4 (HP)	5 (MP)	7 (BP)	0 (TP)	6 (Rep.)	8 (Dep.ouv.)	9 (Dep.fer.)	situation	F (>50%)	E (31 à 50%)	D (16 à 30%)	C (9 å15%)	B (4 à 8%)	A (O à 3%)	•
			11	22	22	44	-					0.00	44	11	22	22		1	MP À Som. Pente Pente très forte (E-F
	FC10	9	!	23	77		 					0,00		5	36	45	14	11	HP. Pente forte (C-D)
	FE32H	22		1	50	50	 		-	 		0.00		33	17	50		1	HP -MP. Pente modérée (C)
	FE60	6			38	31			13	 		0,00	25	6	19	25	25	11	HPMP. Pente modérée (A-B-C-D)
	MJ20	16	6	13	30	100	 		13	 		0,00			50	50		1	MP Pente forte (D)
	MS20	2				100	┼		├ ──	 	 	0.00				1	100	1	MP Pente faible (B)
	RB12	2		1		100	—			 		0.00				100		11	MP Pente modérée (C)
	RE20	1		1 -1 -	100	63				 	 	0.00	32	16	21	26	5	1	MP -Som. Pente modérée (A-B-C-D)
	RS10	19		21	16	100	+		├	 		0.00				100		1	MP Pente modérée (C)
	RS25	11		1 1							 	0.00		<u> </u>	100	1		1	MP. Pente forte (D)
	RS50	1		1	 -	100			 	 	 	0.00	67		33	1		1	MP -HP Pente très forte (F)
	RT12	3		1_1_	33	67	+	3	8	1	 	0.05	3	9	42	29	12	5	MP -HP. Pente forte (C-D)
	FE22	130	1	9	22	55	11		10	 '		0.05	29	19	24	19	10	1	MP - HP Pente modérée (A-B-C-D)
	MJ10	21	5	5	24	52	+	5		+	 	0.05	5	5	37	37	5	27	MPRep. Pente forte (C-D)
	RS12	49		5	16	53	5_	1	12	1-1-	-	0,06	5	6	42	25	20	3	MP. Pente forte (C-D)
	FE32	117		2	11	69	2	3			 	0.06	8	4	38	27	19	4	MPHP. Pente forte (C-D)
	FE52	52	2	17	27	40	2	2	8	5	 	0.09	10	25	48	5	8	5	MP -HP Pente forte (C-D)
	FE30	40	3	3	30	58	<u> </u>	3		 	 	0.09	1-10	 	50	33	17	1	HPMP. Pente forte (D)
	FE62	12		8	58	25		8			 	0.09	 	18	26	39	13	3	MP Pente forte (C-D)
	MJ12	38		1	11	66		8_	16		 	0.10	6	3	19	31	41	1	MPHP. Pente forte (C-D)
	MJ22	32		13	19	47		9	13		 	0,10	 	10	31	34	17	7	MP -Rep. Pente forte (C-D)
	FE25	29		7	17	41		10	21	3		0,15	├ ──	10-	40	 	40	20	HP -Som. Pente faible (A-B)
	RS11	5		20	40		20	<u> </u>	20	 	_	0.28	13		35	17	30	4	MP. Pente forte (C-D)
	MJ15	23		4		57	4	9	17	9	 	0.29	11	 	22	22	44	1	MP. Som. Pente modérée (A-B-C-D)
3b	MS22	9		22		33		22	22		 	0,29	 - '' -		 	1	75	25	MP Som Pente faible. (B)
30	MJ21	4		25		50		25					3	В	18	38	26	В	MP. Pente forte (C-D)
	FE35	39		1	8	56	3	15	8	5	5	0,38	 	+	30	10	20	40	MP -BP. Pente faible (A-B)
	MS21	10		1	10	40	20	10	20		 	0.42	 	В	8	25	25	33	MP -BP. Pente faible (A-B)
	MF15	12		1	8	50	25	┸—	8		8	0.49	 	 	 	1	33	67	MP -BP. Pente faible (A-B)
	RS37	3		1	1	33		1	33					7	43	 	21	21	MP Pente forte (C-D)
	FE31	14		7_	7	50		21				0,55	 	 '	20	40	+	40	BP -MP Pente forte (C-D)
	RS22	5		1	20	20			20			0,66		 	17	42	17	25	Rep -BP Pente forte (C-D)
l	MJ25	12		1	8	В	25	17	42		_	0,71	 		 ''	25	+-''-	75	MP MP Pente très faible (A)
<u> </u>	MS25	4		1		25			25		 	0,98	┼	-	 	1	50	50	BP -Rep Pente faible (B)
l	RE37	2		1			50		50			0,98	50			 	+	50	BP -HP. Pente très forte (F)
ł	RP12	2		1	50		50	1_				0,98	20	 		+	50	50	BP -MP. Pente faible (B)
ļ	RS55	4		1		25			25			0,98		 	 	18	27	45	BP -MP. Pente faible (A-B)
i	RS15	11	T	1		27	36	18				1,17		9		1 10	67	33	Dépressions Pente faible (B)
l	RS18	3		1					33	33	33	1,94	1			33		67	BP -MP. Pente très faible (A)
l	RS52	3	1	1_1_		33						1,97	-			10	24	67	Dep ouv - BP Pente très faible (A)
l	MJ28	42		1	2	10		5	17	31	12	2,40	+	+	 	11	-+	89	BP Pente très faible (A)
Į.	RE21	9	T	1			89		11		1	7,42	 		+	5		95	BP - Dép ouv Pente très faible (A)
1	RC38	19		1			58		11	21	11	7,50	1	 		8	+	92	BP Pente très faible (A)
l	RS38	13	T	1			85		8	8		10,33	 				+	100	BP Pente très faible (A)
I	FO18	3	T	1			100					> 10.33			 	+		100	BP Pente très faible (A)
Ì	RE25	1 2	1	1 1			100					> 10.33			 		+	100	BP Pente très faible (A)
I	RE25		1	1			100					> 10.33				1		100	BP Pente très faible (A)
I	RE39	10	1	1		1	100					> 10.33			 	!	+	75	BP Pente très faible (A)
1	RS39	4		1 1	1		50	25			25	> 10.33				11_	25	/5	IDE FERILE LIES MIDIE (A)

⁽¹⁾ Les données sont exprimées en fréquence relative: % des relevés observés dans les différentes variables de pente. Le total peut différer lèrement de 100% à cause de l'arrondi

⁽²⁾ Indice = situation de versant (2+3+4+5+7) / situation de contrebas (0+6+8+9)